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Abstract
In this paper, we develop a library of typed proof search procedures,
and demonstrate their remarkable utility as a mechanism for proof-
search and automation. We describe a framework for describing
proof-search procedures in Agda, with a library of tactical combi-
nators based on applicative functors. This framework is very gen-
eral, so we demonstrate the approach with two common applica-
tions from the field of software verification: a library for property-
based testing in the style of SmallCheck, and the embedding of a
basic model checker inside our framework, which we use to verify
the correctness of common concurrency algorithms.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs; D.2.4 [Software Engineering]: Software/Program
Verification; D.2.5 [Software Engineering]: Testing and Debug-
ging

Keywords Agda, testing, properties, model checking, proof, au-
tomation, critical section, concurrency

1. Introduction
Computers have been used to establish proofs for decades. For ex-
ample, the original proof of the four colour theorem (Appel et al.
1977) and the Kepler conjecture (Hales 2005) relied on a computer
program for exhaustive case analysis. Closer to home, proofs about
programs are very commonly established automatically, using ev-
erything ranging from model checkers, which establish properties
about programs by examining their state space, to test frameworks,
which produce counterexamples to hypothetical specifications.

Such computerised proof-searches are opaque. Their result con-
sists typically of a single bit, without context: either the search suc-
ceeded or it failed. What this means in terms of proof is left up to
a human to decide. Recently, for the aforementioned mathemati-
cal theorems, a great deal of work has been done to formalise these
proof-searches inside a mechanical theorem prover (Gonthier 2008;
Hales 2006), in order to recover the provenance of that single bit.
In other words, they formally verify the proof-search program to
ensure that the bit it produces means what we think it means.

Dependently typed languages hold a lot of promise in this area.
By unifying the language of programs and the language of proofs,
such proof-search programs can produce not merely a yes-or-no

answer, but actual evidence to support the proposition they are at-
tempting to automatically prove. The type system already ensures
that this evidence constitutes a correct proof, and so separate veri-
fication is unnecessary1.

In this paper, we describe a general framework in Agda for
describing evidence-producing proof-search programs, and use it
to develop a combinator language in the style of property-based
testing libraries such as SmallCheck (Runciman et al. 2008) and
QuickCheck (Claessen and Hughes 2000). To demonstrate the ver-
satility of our approach, we shall also prove some classic verifi-
cation properties about concurrent programs, by defining a simple
model checker within our framework, and using it for exhaustive
state space analysis.

2. Decision Procedures
The simplest example of a proof-search procedure in Agda is the
humble Dec type.

data Dec (P : Set) : Set where
yes : P → Dec P
no : ¬ P → Dec P

A program given the type DecP amounts to an evidence-producing
decision procedure for the proposition P . Dec, or a type much like
it, is commonly used as a replacement for Bool in a dependently-
typed setting.

Any complete proof-search procedure can be encoded as a Dec.
For example, equality of natural numbers is fully decidable:

_ .
=_ : (m : N)→ (n : N)→ Dec (m ≡ n)

zero .
= zero = yes refl

suc m .
= suc n with m .

= n
... | yes p = yes (cong suc p)
... | no prf = no (prf ◦ cong pred)
zero .

= suc n = no λ()
suc m .

= zero = no λ()

A decider for ordering of natural numbers can be defined along the
same lines:

_≤?_ : (m : N)→ (n : N)→ Dec (m ≤ n)

Or a decision procedure that, drawing from the standard library,
checks if a number is the greatest common divisor of two others:

gcd? : (m n d : N)→ Dec (GCD m n d)

These deciders are useful not just for programming, but also as a
simple proof automation tool. We can use each one as a miniature

1 Assuming, of course, that the type checker is correct
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tactic, simply by using dependent types to extract the evidence from
the value, whichever way it goes:

DecType : ∀{P}→ Dec P→ Set
DecType {P} (yes _) = P
DecType {P} (no _) = ¬ P
dec-evidence : ∀{P}→ (d : Dec P)→ DecType d
dec-evidence (yes p) = p
dec-evidence (no p) = p

A simple example is ordering proofs for naturals, where the proof
object grows linearly with the left-hand number. By using our
previously-defined decider, we can get Agda to compute this large
proof object for us:

ex1 : 135 ≤ 341
ex1 = dec-evidence (135 ≤? 341)

A more interesting example is a proof that 6 and 35 are coprime:

ex2 : GCD 6 35 1
ex2 = dec-evidence (gcd? 6 35 1)

Problems begin to set in, however, when we wish to write proof-
search procedures for propositions that have no complete proof-
search algorithm. For example, there is no decider to determine if a
(potentially infinite) colist has finite length:

postulate halt : ∀{A : Set}{xs : Colist A}→ Dec (Finite xs)
– Impossible.

This is due to a simple reduction to the halting problem: Let xs
be a colist containing each successive configuration of an arbitrary
Turing Machine as it executes. Then, deciding if xs is finite is
equivalent to deciding the halting problem, and therefore such a
decider cannot exist.

3. Half a Decider
While predicates such as Finite are not decidable, there are cases
where a proof can be found automatically (i.e. when the list is fi-
nite). So, a proof search procedure is really half of a decider, where
failure of the proof search does not indicate that the proposition is
false — merely that a proof cannot be found. We call these proce-
dures hemideciders (as opposed to semideciders, which will always
find a proof if it exists but may loop forever otherwise, a hemide-
cider always terminates but is never obligated to find a proof).

We can define hemideciders by taking the Dec type and remov-
ing the negative evidence:

data HDec (P : Set) : Set where
success : P→ HDec P
failed : HDec P

With this definition, success e corresponds to the yes case of Dec,
where evidence is provided in favour of the proposition being
tested. A result of failed simply means that such evidence was not
found, not that it does not exist.

We could write similar proof-reflection functions as for Dec for
this new definition, as follows:

HDecType : ∀ {P}→ HDec P→ Set
HDecType {P} (success _) = P
HDecType {P} (failed) = >

evidence : ∀ {P}→ (p : HDec P)→ HDecType p

evidence (success p) = p
evidence (failed) = tt

However this representation precludes a powerful performance op-
timisation. Note that the definition of HDecType merely checks
whether a proof was found — it discards the evidence itself.

When type checking a use of evidence the type checker must
run the proof search to either success or failed to determine the
result of HDecType. Importantly, the HDec only needs to be eval-
uated far enough to discover the constructor (success or failed) and
no further. This means that we should make determining which
constructor is returned as efficient as possible.

Consider the case where we compose multiple hemideciders
monadically (as in Section 3.1), where all constituant hemideciders
must find a proof in order for their composition to find a proof. In
this case we must traverse the search space and build up a proof
object (which may be very large), at every step checking that all
the substeps returned success. We cannot determine the final result
until after we have created the entire proof object.

We solve this problem by separating the single bit that tells us if
a proof was found from the procedure that constructs the evidence:

record HDec (P : Set) : Set where
constructor hd
field found : Bool
field proof : T found→ P

This definition includes a single boolean, found, that signifies that
a proof was found, and a function proof that produces evidence
for the given proposition, given a witness that the boolean found is
true2.

Now, in order to determine if the proof was found, we merely
need to examine the found field, and only construct the proof object
when needed with proof.

HDecType : ∀ {P}→ HDec P→ Set
HDecType {P} (hd true pr) = P
HDecType {P} (hd false pr) = >
evidence : ∀ {P}→ (p : HDec P)→ HDecType p
evidence (hd true p) = p tt
evidence (hd false _) = tt

Of course, we can continue to use the stronger Dec as a HDec by
throwing away the refutation:

fromDec : ∀ {A : Set}→ Dec A→ HDec A
fromDec (yes p) = hd true (const p)
fromDec (no p) = hd false ⊥-elim

Just as QuickCheck includes a Testable type class to automat-
ically convert from Bool (among other things) to Property, we
define a record type and use Agda’s instance arguments mechanism
(Devriese and Piessens 2011) to similarly convert Dec to HDec au-
tomatically:

record IsSearch (t : Set→ Set) : Set1 where
constructor is-hdec
field toHDec : (∀ {p}→ t p→ HDec p)

instance
HDecIsSearch = is-hdec id
DecIsSearch = is-hdec fromDec

open IsSearch {| ... |}

2 In Agda, T is an indexed type that is inhabited iff its index is true
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Here, the open keyword is used to bring the function toHDec in
scope, where the specific implementation is chosen by automatic
search through all bindings declared in an instance block.

3.1 Tactical Applicatives
As our HDec type is similar to Maybe, it admits similar Monad,
Applicative and Alternative instances3. These instances give us a
basic framework to combine proof-search procedures, reminiscent
of tacticals from LCF or HOL-style theorem provers (Slind and
Norrish 2008).

Trying Many Alternative Approaches To give an instance of
Alternative, we must make use of the following lemma from the
standard library, which takes a witness of disjunction and produces
a disjunction of witnesses:

∨-T : ∀{a b}→ T (a ∨ b)→ T a ] T b

The Alternative instance consists of a proof-search procedure that
always fails; and a function combines two hemideciders for the
same proposition by trying one then the other, similarly to the
ORELSE tactical in HOL.

∅ : ∀{X}→ HDec X
∅ = hd false ⊥-elim

_|_ : ∀{X}→ HDec X→ HDec X→ HDec X
_|_ {X} (hd f1 a) (hd f2 b) = hd (f1 ∨ f2) (choose ◦ ∨-T)

where
choose : T f1 ] T f2→ X
choose (inj1 t1) = a t1
choose (inj2 t2) = b t2

Explicit Chaining with Monad The Monad instance allows one
to chain proof-searches together, each one building on the results
of the previous, similarly to the THEN tactical in HOL. If any of the
individual searches fail, the whole search fails:

_»=_ : ∀{P Q}
→ HDec P
→ (P→ HDec Q)
→ HDec Q

_»=_ (hd true p) f = f (p tt )
_»=_ (hd false p) f = hd false ⊥-elim

return : ∀{P}→ P→ HDec P
return = hd true ◦ const

The explicit dependency in the Monad bind function requires us
to construct the evidence of the left hand proposition (by calling
the function p), before executing the right-hand proof-search pro-
cedure. As constructing this evidence is costly, substantial perfor-
mance improvements can be made by relying on the Applicative
instance wherever possible, as applicative functors remove this de-
pendency.

Efficient Composition with Applicative The popular Applicative
idiom (McBride and Paterson 2008) gives us a way to apply a
proof-search procedure for each subgoal in a rule, similarly to the
THENL tactical in HOL. Crucially, and unlike Monad, it allows us

3 As the standard library lacks anAlternativemodule, we use the equivalent
RawMonadPlus module instead.

to compose hemideciders without constructing any proof objects.
Analogously to Alternative, we use a lemma from the standard
library, this time regarding conjunction:

∧-T : ∀{a b}→ T (a ∧ b)→ T a × T b

The definition of ~ then proceeds smoothly. Note that unlike the
Monad instance, we never apply the expensive evidence-producing
function a:

_~_ : ∀{A B}
→ HDec (A→ B)
→ HDec A→ HDec B

_~_ {A}{B} (hd f1 a) (hd f2 b)
= hd (f1 ∧ f2) (conclude ◦ ∧-T)

where
conclude : T f1 × T f2→ B
conclude (t1 , t2) = a t1 (b t2)

The Applicative instance allows us to use the idiom brackets no-
tation of McBride and Paterson (2008), as implemented in Agda
2.5.1. Idiom brackets allow expressions of the form (f 〈$〉 a~ b~ g c)
to be written more succinctly as (|f a b (g c)|).

Putting Our Instances to Work With this framework for defining
proof-searches, we can write some combinators for common logi-
cal connectives, like conjunction and disjunction. Conjunction re-
lies on the Applicative instance, as both conjuncts must be proved:

_and_ : ∀{A B}{hdec1 hdec2}
→ {| P1 : IsSearch hdec1 |}→ hdec1 A
→ {| P2 : IsSearch hdec2 |}→ hdec2 B
→ HDec (A × B)

a and b = (| toHDec a , toHDec b |)

Disjunction conversely relies on the Alternative instance, as only
one of the hemideciders must find a proof:

_or_ : ∀{A B}{hdec1 hdec2}
→ {| P1 : IsSearch hdec1 |}→ hdec1 A
→ {| P2 : IsSearch hdec2 |}→ hdec2 B
→ HDec (A ] B)

a or b = (| inj1 (toHDec a) |) | (| inj2 (toHDec b) |)

To define an implication connective, we search for a refutation of
the antecedent or a proof of the conclusion, exploiting the familiar
fact that (¬a ∨ b)→ (a→ b):

impl : ∀{A B : Set}{hdec1 hdec2}
→ {| P1 : IsSearch hdec1 |}→ hdec1 (¬ A)
→ {| P2 : IsSearch hdec2 |}→ hdec2 B
→ HDec (A→ B)

impl a b = (| contr (toHDec a) |) | (| const (toHDec b) |)
where

contr : ∀{A B : Set}→¬ A→ A→ B
contr ¬a a = ⊥-elim (¬a a)

We can even make our hemideciders recursive, to search through
data structures. For example, the Any and All types state that a
given property is true for any or all elements, respectively, of a
given list. The combinators for these types are quite straightfor-
ward. For any, we search for a proof of the property for the head,
and recurse into the tail if the search fails.

any : ∀ {X : Set}{p : X→ Set}{hdec}
→ {| P : IsSearch hdec |}
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→ (xs : List X)
→ ((x : X)→ hdec (p x))
→ HDec (Any p xs)

any [] f = ∅
any (x :: xs) f = (| here (toHDec (f x)) |)

| (| there (any xs f) |)

For the definition of all, we use the Applicative instance rather than
the Alternative, and search for a proof of the property for each
element of the list:

all : ∀ {X : Set}{p : X→ Set}{hdec}
→ {| P : IsSearch hdec |}
→ (xs : List X)
→ ((x : X)→ hdec (p x))
→ HDec (All p xs)

all [] f = pure []
all (x :: xs) f = (| toHDec (f x) :: all xs f |)

4. Property Based Testing
Our proof search procedures are particularly suited to existence
proofs: finding a solution to an equation, or a counterexample to
a conjecture, or even the presence of a bug in a program. Property-
based testing libraries such as QuickCheck (Claessen and Hughes
2000) and SmallCheck (Runciman et al. 2008) are examples of
such existence searches already in widespread use. More recently,
Paraskevopoulou et al. (2015) designed a verified a property based
testing library in Coq, by associating a semantics to checkers and
showing that the tests do indeed check the properties we hope they
do. Our typed approach allows for a much more direct encoding of
properties (see Section 4.1), as the semantics of the checker show
up in the checker’s type.

Unlike Paraskevopoulou et al. (2015), which focuses on pseudo-
random candidate generation, we merely define a generator to be
a coinductive stream of test candidates. Exactly how these candi-
dates are generated is left up to the producer of the stream. Bulwahn
(2012) examines the relative performance of the various generation
mechanisms in a theorem-proving context. They found that exhaus-
tive enumeration found slightly more counterexamples to common
theorems than selecting inputs randomly, so we shall stick to ex-
haustive enumerators for this development.

Gen = Stream

In turn, Stream is defined in the Agda standard library as:

data Stream (A : Set) : Set where
_::_ : (x : A) (xs :∞ (Stream A))→ Stream A

In Agda idiom, the type ∞ P refers to a suspended computation
with result type P . Such thunks can be created with the ] opera-
tor, and forced into values with the [ operator. Agda’s termination
checker works a double shift as a productivity checker for corecur-
sion — just as it checks that all recursion is structural, it ensures
that all corecursion is guarded.

Many useful functions for working with streams are available
from the standard library also: map, head, tail, take, and so on.
Of particular use is iterate, as it allows for a natural way to define
enumerators for types. For example, the enumerator for all natural
numbers:

instance nats0 = S.iterate suc 0

To avoid confusing these functions with the equivalent List func-
tions, we have qualified them in this development by the letter S.
Similarly, for the equivalent functions for length-indexed vectors
(called in Agda Vec), we use the qualifier V.

4.1 Properties
We define a Property to be a proof search procedure parameterised
by a search depth:

Property : Set→ Set
Property P = (depth : N)→ HDec P

The Property type used in property-based testing libraries would
be more accurately represented as a search for a counterexample
(N → HDec (¬P )) than our definition above. In an intuitionistic
logic such as Agda’s type theory, however, the additional negation
can prove rather inconvenient. A pessimistic search for a counterex-
ample precludes the use of these techniques for positive proposi-
tions, such as constructive existence proofs. As we do not want our
framework to be restricted merely to counterexamples, we reframe
the language to be more optimistic: a search for truth, rather than a
statement to refute.

Similarly to IsSearch above, we define a “type class” to allow
us to treat HDec, Dec and Property uniformly.

record IsProp (t : Set→ Set) : Set1 where
constructor is-prop
field toProp : (∀ {p}→ t p→ Property p)

instance
IsSearchIsProp : ∀{S}→ {| P : IsSearch S |}→ IsProp S
IsSearchIsProp = is-prop (const ◦ toHDec)
PropertyIsProp = is-prop id

open IsProp {| ... |}

To actually check a property, we simply supply the search depth,
and the proof is returned to us, if found:

PropType : ∀{P}→ N→ Property P→ Set
PropType d p = HDecType (p d)

check : ∀{P}→ (d : N)→ (p : Property P)→ PropType d p
check d p = evidence (p d)

4.2 Existence Search
Now we have all the ingredients in place to define a property
combinator for existential quantifiers, by testing every element of
the given generator until a proof is found or a depth limit is reached.
We use our existing any combinator to search through the first d
candidates from the stream.

exists : ∀ {X}{p : X→ Set}{prop}
→ {| g : Gen X |}
→ {| P : IsProp prop |}
→ ((x : X)→ prop (p x))
→ Property (∃ p)

exists {X}{p} {| s |} f d
= let xs = V.toList $ S.take d s

in weaken 〈$〉 any xs (λ x→ toProp (f x) d )
where

weaken : ∀{ls}→ Any p ls→ ∃ p
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weaken (here x) = _ , x
weaken (there y) = weaken y

Now we can try some more interesting applications. For example,
it may seem (at first glance) that the following conjecture is true:

gcd(i2 + 7, (i+ 1)2 + 7) = 1

Certainly, for small values of i, it seems true enough. Let us put our
framework to work, and see if it can find a counterexample:

ex3 : Property (∃ λ i→¬ GCD (i 2 + 7) ((i + 1)2 + 7) 1)
ex3 = exists λ i→¬? (gcd? (i 2 + 7) ((i + 1)2 + 7) 1)

Indeed, evaluating check 20 ex3 gives us a counterexample:
(14, 〈large proof term〉), which indicates that our conjecture is fal-
sified when i = 14.

We can even extract the proof from the property, as we did with
Dec, and save ourselves the trouble of figuring out how to prove it
by hand:

lemma : ∃ λ i→¬ GCD (i 2 + 7) ((i + 1)2 + 7) 1
lemma = check 20 ex3

4.3 Some Standard Stream Functions
Curiously, the following very useful functions were missing from
the standard library’s Stream module, where they perhaps belong.
Firstly, a sequence function, to convert a vector of streams to a
stream of vectors:

readMulti : ∀{A}{l}
→ Vec (Stream A) l→ (Vec A l × Vec (Stream A) l)

readMulti [] = [] , []
readMulti (x :: v) with readMulti v
... | as , ss = (S.head x :: as) , (S.tail x :: ss)

sequence : ∀{A}{l}
→ Vec (Stream A) l→ Stream (Vec A l)

sequence vs with readMulti vs
... | as , ss = as :: ] sequence ss

Secondly, a concat function, which takes a stream of (non-empty)
lists and yields each element of each list individually:

concat : ∀ {A}→ Stream (List+ A)→ Stream A
concat ((x :: []) :: xss) = x :: ] concat ([ xss)
concat ((x :: y :: xs) :: xss) = x :: ] concat ((y :: xs) :: xss)

Finally, a function to fairly merge a group of streams into a single
stream:

multiplex : ∀{A}{l}→ Vec (Stream A) (suc l)→ Stream A
multiplex vs = concat (S.map fromVec (sequence vs))

4.4 Generating Regular Types
Now that we have defined a combinator language for Property,
and plugged some of the holes in the standard library’s Stream
module, we now turn to the remaining unconquered territory that
property-based testing has charted for us. We need a language to
build generators for common data types.

Sum types are rather stress-free, accomplished easily by fairly
merging the two streams:

y
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Figure 1. Cantor’s zig-zag traversal, for N× N

instance
sums : ∀{A B} {| a : Gen A |} {| b : Gen B |}→ Gen (A ] B)
sums {| a |} {| b |} = multiplex

( S.map inj1 a :: S.map inj2 b :: [])

Products, or their more general dependent counterparts, Σ-types,
are slightly more intricate. It is easy to construct a two-dimensional
plane of products from the two generators:

Σ-plane : ∀{A}{B : A→ Set}
→ Gen A→ ((x : A)→ Gen (B x))
→ Gen (Gen (Σ A B))

Σ-plane as bs = S.map (λ a→ S.map (_,_ a) (bs a)) as

But then there are an infinite number of possible lines one could
draw through this plane to produce a single stream. We could draw
a straight diagonal, which is easy, but this does not preserve the
exhaustivity of the original generators.

Instead, we borrow a trick originally from Georg Cantor (Ewald
1996), and proceed in a “zig-zag” fashion, covering the whole plane
(See Figure 1).

The nth diagonal component of the traversal can be expressed
as all coordinates where the sum of the x and y components is n.
Therefore, we can simply generate each diagonal component and
concatenate them to produce our line.

To store each “line” in the plane, we use Agda’s non-empty
List type List+, which convinces Agda that our traversal is always
productive.

zig : ∀ {A}→ List+ (Gen A)
→ Gen (Gen A)→ Gen A

zag : ∀ {A}→ List+ A→ List+ (Gen A)
→ Gen (Gen A)→ Gen A

zig xs ls = zag (S.head 〈$〉 xs) (S.tail 〈$〉 xs) ls

zag (x :: []) zs (l :: ls) = x :: ] zig (l :: toList zs) ([ ls)
zag (x :: y :: xs) zs ls = x :: ] zag (y :: xs) zs ls

This traversal allows us to define a function to flatten a plane into
a line:

flatten : ∀ {A}→ Gen (Gen A)→ Gen A
flatten (l :: ls) = zig (l :: []) ([ ls)

Now, using this function, we can define a generator for Σ-types,
and their specialisation to familiar product types:
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_also_ : ∀{A}{B : A→ Set}
→ Gen A→ ((x : A)→ Gen (B x))→ Gen (Σ A B)

as also bs = flatten (Σ-plane as bs)

instance
pairs : ∀{A B}{| a : Gen A |} {| b : Gen B |}→ Gen (A × B)
pairs {| a |} {| b |} = a also (λ x→ b)

A nice example of this generator is searching for solutions to
diophantine equations, such as Pythagoras’ theorem:

triad : Property _
triad = exists λ { (z , x , y)→
¬? (x .

= 0) and ¬? (y .
= 0) and ((x 2 + y 2) .= z 2) }

Checking triad not only gives the expected triad (5, 4, 3), but also
provides a proof4 that these numbers satisfy the equation x2+y2 =
z2.

4.5 Lists
As our regular types are composed of sums and products, these
building blocks can be used to make generators for many common
data types. Using products, we can define a generator for vectors
of a fixed length:

vecs : ∀{A} n {| g : Gen A |}→ Gen (Vec A n)
vecs zero = S.repeat []
vecs (suc n) {| g |} = S.map (λ { (a , b)→ a :: b }) $

pairs {| g |} {| vecs n {| g |} |}

Furthermore, we can simply generate vectors of every length, and
traverse them once again in a zig-zag fashion, to give us a generator
for lists:

lists : ∀{A}→ {| g : Gen A |}→ Gen (List A)
lists = flatten $

S.map (λ n→ S.map V.toList (vecs n)) nats0

5. Model Checking
One of the biggest sources of surprising counterexamples is in the
verification of programs with large amounts of nondeterminism,
such as critical section solutions used in concurrency.

The most common automated technique for verifying such pro-
grams is model checking, where the program is typically modelled
by some automaton, such as a Büchi Automaton (Thomas 1990), a
Kripke structure (Kripke 1963), or other transition diagrams, such
as those used by Floyd (Floyd 1967). The state space of this au-
tomaton is searched for violations of the desired correctness condi-
tions. If no violations are found, and the state space is exhaustively
searched, the program is correct.

In this section, we shall embed a basic model checker for a sub-
set of CTL (Clarke et al. 1986) within Agda, and then put our ex-
isting hemidecisions framework to work, verifying the correctness
of common critical section solutions.

We intentionally do not make use of more sophisticated model
checking techniques, such as LTL model checking using Büchi Au-
tomata, as bridging the distance between what these checkers do
and what they prove requires a fair bit of non-trivial reasoning.
While these methods are not incompatible with our framework, de-
signing an evidence-producing algorithm for such model checking
is much more involved.

4 In this case, the proof term is merely refl
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Figure 2. The computation tree of HiHorse || LoRoad

5.1 Transition Diagrams
A transition diagram is essentially a nondeterministic automaton,
with a set of state labels L, an initial state label I , some shared
state Σ and a transition relation δ : (L×Σ)× (L×Σ), which we
model as a function from an initial state L×Σ to a list of successor
states.

record Diagram (L : Set)(Σ : Set) : Set1 where
constructor td
field δ : L × Σ→ List (L × Σ)

I : L

The parallel composition of two diagrams represents a nondeter-
ministic interleaving of every transition in either of the original
processes. That is, parallel composition is simply the product of
the two automata. An individual process may interfere with the be-
haviour of the other, as they both manipulate the same shared state
Σ.

_‖_ : ∀{L1 L2}{Σ}
→ Diagram L1 Σ→ Diagram L2 Σ

→ Diagram (L1 × L2) Σ
(td δ1 i1) ‖ (td δ2 i2) = td δ (i1 , i2)
where
δ = (λ { ((`1 , `2) , σ)→

map (λ { (`1′ , σ′)→ (`1′ , `2 ) , σ′ }) (δ1 (`1 , σ)) ++
map (λ { (`2′ , σ′)→ (`1 , `2′) , σ′ }) (δ2 (`2 , σ)) })

An illustrative example is the composition of the two processes
HiHorse and LoRoad, who share a single number between
them. HiHorse will always increase the number, but LoRoad
always decreases it.

Hi

suc

		
|| Lo

pred

		
= Hi,Lo

suc
��

pred




OO OO OO

Note that the parallel composition repeatedly makes a nondeter-
ministic choice between increasing and decreasing the number, re-
flecting the nondeterministic interleaving of the two original pro-
cesses.

HiHorse LoRoad : Diagram > N
HiHorse = let δ = λ { (` , σ)→ [ (` , suc σ )]}

in td δ tt
LoRoad = let δ = λ { (` , σ)→ [ (` , pred σ )]}

in td δ tt
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guards g : Σ→ B
formulae φ, ψ ::= 〈g〉 | Completed

| φ ∧ ψ | >
| A(φ U ψ)
| E(φ U ψ)
| AF φ | EF φ
| AG φ | EG φ

Figure 3. Grammar of our CTL subset

5.2 Computation Tree Logic
Having found a suitable method to define processes, we now wish
to perform analysis on their behaviour. We will state our program
properties in a subset of the Computation Tree Logic of Clarke et al.
(1986), which includes a series of modal operators to describe prop-
erties of processes’ computation trees. This tree is the (potentially
infinitary) unfolding of the transition diagram, and takes the form
of a corecursive rose tree:

module CTL(L Σ : Set) where

data CT : Set where
At : (L × Σ)→∞ (List CT)→ CT

Each path through the tree is a valid trace of the original program.
For example, the computation tree of HiHorse || LoRoad is a
binary tree where all paths extend infinitely (See Figure 2). Given
a value for the starting shared state, we construct the computation
tree of a given diagram as follows:

model : Diagram L Σ→ Σ→ CT
model (td δ I) σ = follow (I , σ)

where
follow : (L × Σ)→ CT
followAll : List (L × Σ)→ List CT
follow σ = At σ (] followAll (δ σ))
followAll (σ :: σs) = follow σ :: followAll σs
followAll [] = []

The syntax of our CTL fragment is given in Figure 3. In Agda, our
model checker will examine the computation tree exhaustively up
to a finite depth. A formula therefore is defined as a property of a
computation tree with a depth limit:

Formula = (depth : N)→ (tree : CT)→ Set

We say a tree satisfies a formula (written t |= φ) if there exists a
depth d0 for which the property holds for all depths d ≥ d0.

data _|=_ (m : CT)(φ : Formula) : Set where
satisfies : ∀ d0→ (∀ { d }→ d0 ≤′ d→ φ d m)→ m |= φ

In our development, we are only concerned with formulae that are
not falsifiable by increasing the search depth. We call this property
depth-invariance.

record DepthInv (φ : Formula) : Set where
constructor di
field proof : (∀{n}{m}→ φ n m→ φ (suc n) m)

If a depth invariant formula holds for a particular depth, it follows
that the tree satisfies the formula in general:

di-|= : ∀{n}{φ}{m} {| d : DepthInv φ |}
→ φ n m→ m |= φ

di-|= {n}{φ}{m} {| di d |} p = satisfies n (λ q→ di-≤ p q)
where

di-≤ : ∀{n n′}→ φ n m→ n ≤′ n′→ φ n′ m
di-≤ p ≤′-refl = p
di-≤ p (≤′-step l) = d (di-≤ p l)

We make the depth-invariance constraint an instance argument as it
can be automatically proven by using syntax-directed rules, which
we will prove along with each formula.

The simplest example of a formula is the trivially true formula
>. As this formula is never falsifiable, it is easily depth-invariant:

data True : Formula where
tt : ∀{n}{m}→ True n m

instance
True-di : DepthInv True
True-di = di (const tt)

The formula 〈g〉 is true when the current state satisfies the guard g.

data 〈_〉 (g : {| σ : Σ |}→ {| ` : L |}→ Set) : Formula where
here : ∀{σ}{`}{ms}{d}→

g {| σ |} {| ` |}→ 〈 g 〉 d (At (` , σ) ms)

We make the parameters to the guard instance arguments to allow
guards about state projections to be written more succinctly, as in
Section 7.1.

Once again depth-invariance is easily established as this for-
mula ignores the depth:

instance
〈〉-di : ∀{p : {| σ : Σ |} {| ` : L |}→ Set}
→ DepthInv 〈 p 〉

〈〉-di {p} = di proof
where

proof : ∀{n}{m}→ 〈 p 〉 n m→ 〈 p 〉 (suc n) m
proof (here x) = here x

Conjunction is defined predictably, requiring a proof of both
conjuncts, and is depth-invariant if the two conjuncts are depth-
invariant.

data _∧′_ (φ ψ : Formula ) : Formula where
_,_ : ∀{n}{m}→ φ n m→ ψ n m→ (φ ∧′

ψ) n m
instance
∧′-di : ∀{φ ψ} {| p : DepthInv φ |} {| q : DepthInv ψ |}
→ DepthInv (φ ∧′

ψ)
∧′-di {| di p |} {| di q |} = di λ { (a , b)→ p a , q b }

To illustrate the semantics of the temporal operators, we use the
following example:

•

~~ ��
◦•

��

◦

�� ��
? ∗ ?

The temporal operator A(φ U ψ) is true when, for all All paths
in the tree, φ is true Until ψ is true. For example, the tree above
satisfies A(•U ◦). In Agda we define it using the standard library’s
All data type to recursively apply the formula to each successor
state.
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data A[_U_] (φ ψ : Formula) : Formula where
here : ∀{t}{n}→ ψ n t→ A[ φ U ψ ] (suc n) t
there : ∀{σ}{ms}{n}
→ φ n (At σ ms)
→ All (A[ φ U ψ ] n) ([ ms)
→ A[ φ U ψ ] (suc n) (At σ ms)

The depth-invariance proof for this operator is a straightforward
induction:

instance
A-di : ∀{φ ψ} {| p : DepthInv φ |} {| q : DepthInv ψ |}
→ DepthInv A[ φ U ψ ]

A-di {φ}{ψ} {| di p |} {| di q |} = di prf
where
prf : ∀{d}{t}→ A[ φ U ψ ] d t→ A[ φ U ψ ] (suc d) t
prf (here x) = here (q x)
prf (there x xs) = there (p x) (All.map prf xs)

Similarly, E(φ U ψ) is true if there Exists a path in the tree where
φ is true Until ψ is true. For example, the tree above satisfies
E(• U ?), on the left branch. In Agda, the definition is similar to
A(φ U ψ), except All is replaced by Any.

data E[_U_] (φ ψ : Formula) : Formula where
here : ∀{t}{n}→ ψ n t→ E[ φ U ψ ] (suc n) t
there : ∀{σ}{ms}{n}
→ φ n (At σ ms)
→ Any (E[ φ U ψ ] n) ([ ms)
→ E[ φ U ψ ] (suc n) (At σ ms)

instance
E-di : ∀{φ ψ} {| p : DepthInv φ |} {| q : DepthInv ψ |}
→ DepthInv E[ φ U ψ ]

E-di {φ}{ψ} {| di p |} {| di q |} = di prf
where
prf : ∀{d}{t}→ E[ φ U ψ ] d t→ E[ φ U ψ ] (suc d) t
prf (here x) = here (q x)
prf (there x xs) = there (p x) (Any.map prf xs)

Using these formulae as building blocks, we can define the Finally
operators, which state that a formula will be eventually satisfied,
either in all paths (AF), or a single path (EF).

AF EF : Formula→ Formula
AF φ = A[ True U φ ]
EF φ = E[ True U φ ]

In the example tree above, AF 〈◦〉 is true, as all paths include a
◦-state; and EF 〈∗〉 is true as there exists a path which includes a
∗-state.

Unfortunately for us, the Globally operators, which make asser-
tions for every state in a path, cannot be defined straightforwardly
in terms of our existing operators. In fact, it is impossible for our
model checking approach to find a proof for these operators in gen-
eral: If a path extends infinitely, examining the path up to a finite
depth does not help us to prove the property for the entire path.
Model checking algorithms exist which handle infinite paths, but
they all work on the automata directly rather than the computa-
tion tree. Instead, we shall examine only the case where paths are
finite (i.e. where the program is terminating). This allows us to ex-
haustively analyse all behaviours merely by examining the com-
putation tree. We introduce a new sort of formula, Completed,
which states that the current state has no successor states.

data Completed : Formula where
completed : ∀{σ}{n}{ms}
→ [ ms ≡ []
→ Completed n (At σ ms)

instance
Completed-di : DepthInv Completed
Completed-di = di prf

where
prf : ∀{d}{t}→ Completed d t→ Completed (suc d) t
prf (completed p) = completed p

With this we can define a stronger form of the Globally operators
than the traditional CTL, as we require that the relevant paths are
finite:

AG EG : Formula→ Formula
AG φ = A[ φ U φ ∧′ Completed ]
EG φ = E[ φ U φ ∧′ Completed ]

5.3 Proof-Search for CTL
We can now put our proof-search framework to use, writing HDec
combinators for each of our CTL operators. A model-checking
procedure for a given formula is defined as a HDec for the formula,
parameterised by a computation tree and a depth limit:

MC : Formula→ Set
MC φ = (t : CT)(d : N)→ HDec (φ d t)

The proof-search combinator for 〈g〉-formulae is called now. It lifts
a HDec on states into a MC procedure:

now : ∀{ g : {| σ : Σ |}→ {| ` : L |}→ Set }{hdec}
→ {| P : IsSearch hdec |}
→ ({| σ : Σ |}→ {| ` : L |}→ hdec (g {| σ |} {| ` |}) )
→MC 〈 g 〉

now p (At (` , σ) ms) _ = (| here (toHDec (p {| σ |} {| ` |})) |)

Another simple combinator is completed? which checks if a state
has any successors.

completed? : MC Completed
completed? (At σ ms) _ = completed 〈$〉 empty? ([ ms)

where
empty? : ∀{X}(n : List X)→ HDec (n ≡ [])
empty? [] = return refl
empty? (_ :: _) = ∅

Conjunction of MC procedures uses the Applicative instance just
as our combinator for HDec does:

_and′_ : ∀ {φ ψ}→MC φ→MC ψ→MC (φ ∧′
ψ)

_and′_ a b m n = (| a m n , b m n |)

Our proof-search procedures for A(φ U ψ) and E(φ U ψ) first
attempt to find a proof ofψ at the current state, and, if that fails, they
will search for a proof for φ then recursively descend the successor
states, requiring that all (for A) or any (for E) of the successor
states in turn satisfy A(φ U ψ).

a-u : ∀{φ ψ}→MC φ→MC ψ→MC A[ φ U ψ ]
a-u _ _ _ zero = ∅
a-u p1 p2 t@(At σ ms) (suc n) = (| here (p2 t n) |)

| (| there (p1 t n) rest |)
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states σ : Σ
updates u : Σ→ Σ
guards g : Σ→ B
statements s ::= s1; s2 | skip

| do g −→ s od
| if g −→ s fi
| update u

(overlines indicate lists, i.e zero or more)

(s, σ) 7→ (s, σ)

(update u, σ) 7→ (skip, u[σ]) (skip; s, σ) 7→ (s, σ)

(s1, σ) 7→ (s′1, σ
′)

(s1; s2, σ) 7→ (s′1; s2, σ
′)

for any k, gk[σ]

(if gi −→ si fi, σ) 7→ (sk, σ)

for any k, gk[σ]

(do gi −→ si od, σ) 7→ (sk; do gi −→ si od, σ)

for all k, ¬gk[σ]

(do gi −→ si od, σ) 7→ (skip, σ)

Figure 4. The Guarded Command Language: Syntax and Semantics

where rest = all ([ ms) λ m→ a-u p1 p2 m n

e-u : ∀{φ ψ}→MC φ→MC ψ→MC E[ φ U ψ ]
e-u _ _ _ zero = ∅
e-u p1 p2 t@(At σ ms) (suc n) = (| here (p2 t n) |)

| (| there (p1 t n) rest |)
where rest = any ([ ms) λ m→ e-u p1 p2 m n

Proof-searches for our derived F and G operators are easy to define
using these combinators:

ef : ∀{φ}→MC φ→MC (EF φ)
af : ∀{φ}→MC φ→MC (AF φ)
eg : ∀{φ}→MC φ→MC (EG φ)
ag : ∀{φ}→MC φ→MC (AG φ)

ef p = e-u (λ _ _→ return tt) p
af p = a-u (λ _ _→ return tt) p
eg p = e-u p (p and′ completed?)
ag p = a-u p (p and′ completed?)

We now have all the combinators we need to do some simple model
checking. For example, we could prove that there exists a path
in our combined process HiHorse || LoRoad where the state
reaches the number 10:

tree = model (HiHorse ‖ LoRoad) 0

reaches10 : HDec _
reaches10 = ef (now (λ {| σ |}→ σ .

= 10)) tree 20

Evaluating reaches10 produces a proof, but only for a particular
depth (namely 20). We can generalise this result to a general proof
of this property by using our depth-invariance results for each com-
binator. As this can be deduced in a syntax-directed way, Agda’s in-
stance arguments feature is able to find the depth-invariance proof
for our formula automatically.

proof : tree |= EF 〈 (λ {| σ |}→ σ ≡ 10) 〉
proof = di-|= (evidence reaches10)

This example demonstrates how easily the proofs produced by our
framework can be used inside manual proof.

6. The Guarded Command Language
Technically, we have all the tools we need to analyse sophisticated
programs, but encoding these programs directly as transition dia-
grams is cumbersome, error-prone, and difficult. Instead, we shall
embed within Agda a miniature imperative language in the style of

Dijkstra’s Guarded Command Language (Dijkstra 1970), originally
used as an example of predicate transformer semantics, but later
used as a basis for modelling languages such as Promela (Holz-
mann 1997). The syntax and structural operational semantics of
the Guarded Command Language are presented in traditional for-
mat in Figure 4. Note that nondeterminism is introduced by both if
and do, as any branch with a valid guard may be chosen. Further-
more, there is the possibility of deadlock (a stuck state) if all of the
guards in an if statement are false — progress is not guaranteed. A
program is considered to have terminated if it evaluates to a single
skip.

Encoding the syntax in Agda is a relatively straightforward
translation from the formal definition.

module GCL(Σ : Set) where
mutual

data GCL : Set where
if_fi : List Guard→ GCL
_·_ : GCL→ GCL→ GCL
do_od : List Guard→ GCL
update : (Σ→ Σ)→ GCL
skip : GCL

Pred = ({| σ : Σ |}→ Bool)
data Guard : Set where

_−→_ : Pred→ GCL→ Guard

We also define a decider to determine whether a program success-
fully terminated (i.e. equal to skip):

skip? : (` : GCL)→ Dec (` ≡ skip)
skip? if x fi = no λ ()
skip? (σ · σ1) = no λ ()
skip? do x od = no λ ()
skip? (update x) = no λ ()
skip? skip = yes refl

For the operational semantics, we once again rephrase the relation
as a function from a state to a list of successor states:

ops : (GCL × Σ)→ List (GCL × Σ)
ops (skip , σ) = []
ops (update u , σ) = [ skip , u σ ]
ops (skip · y , σ) = [ y , σ ]
ops (x · y , σ) = map (λ { (x , σ’)→ (x · y) , σ’}) $

ops (x , σ)
ops (if xs fi , σ) = map (λ { (g −→ x)→ x , σ }) $

filter (λ { (g −→ x)→ g {| σ |} }) xs
ops (do xs od , σ)

with map (λ { (g −→ x)→ (x · do xs od) , σ})
$ filter (λ { (g −→ x)→ g {| σ |} }) xs
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... | [] = [ skip , σ ]

... | ys = ys

Then we can convert any GCL program into a Diagram simply by
using the program itself for local state labels, and the operational
semantics as the transition relation:

J_K : GCL→ Diagram GCL Σ
J p K = td ops p

6.1 Derived Control Structures
Traditional loops are all special cases of do. The venerable while
loop, for example, is just a do loop with a single guard:

while : Pred→ GCL→ GCL
while g x = do g −→ x :: [] od

In the same vein, if with a single guard is an await statement,
which halts progress unless a certain condition is met.

await : Pred→ GCL
await g = if g −→ skip :: [] fi

The traditional deterministic if . . . then . . . else . . . structure is
just an if statement with mutually exclusive and total guards:

if_then_else_ : Pred→ GCL→ GCL→ GCL
if g then x else y = if g −→ x :: not g −→ y :: [] fi

By embedding this expressive language inside Agda, encoding ex-
isting algorithms as models for our checker is much more straight-
forward.

7. Critical Section Solutions
One of the most common example use-cases for model checkers
is concurrency algorithms, particularly so-called “critical section”
solutions. A critical section is a portion of a process execution
that must not be intefered with by any other process. Solving this
problem requires some finesse, as interference is common in any
concurrent program with shared state. The most common solutions
ensure synchronisation of all processes such that, at any time, at
most one process is executing its critical section. This property
is called mutual exclusion. There are a number of algorithms that
solve this problem, each with varying benefits and drawbacks. Two
other important desiderata for a critical section solutions are:

Starvation freedom If a process desires entry into its critical sec-
tion, it will eventually gain entry.

Absence of deadlock The parallel composition of all processes
cannot reach a stuck state.

These properties are simple enough to be checked automatically
by a model checker, but are difficult to show by hand, requiring
at least a quadratic number of proof obligations relative to the to-
tal number of transitions in each process (Owicki and Gries 1976).
Furthermore, it is very easy to mistakenly write a critical section so-
lution that appears correct, but in fact does not satisfy one of these
properties. While it is possible to express large parallel composi-
tions in our framework, we will restrict ourselves to the simpler
two-process case. As additional processes are added, the number
of transitions in the overall automata grows exponentially. As our
model checker is rather primitive, this very quickly consumes all
of Agda’s resources, resulting in stack overflows and very hot
computers.

7.1 Peterson’s Algorithm
Perhaps one of the simplest critical section solutions is Peterson’s
algorithm (Peterson 1981). The shared state consists of three vari-
ables, intent1, intent2 and turn. We also keep some ghost variables
inCS1 and inCS2, to make specifying properties such as mutual ex-
clusion easier in future.

record State : Set where
field

intent1 intent2 : Bool
turn : N
inCS1 inCS2 : Bool

open State {| ... |}

If intentn is true, then process n desires entry into its critical
section. Each critical section is modeled as a single skip where
the inCS variable is set.

CS1 CS2 : GCL
CS1 =

update (λ σ→ record σ { inCS1 = true }) ·
skip ·
update (λ σ→ record σ { inCS1 = false })

CS2 =
update (λ σ→ record σ { inCS2 = true }) ·
skip ·
update (λ σ→ record σ { inCS2 = false })

In order to reuse our equality decider _ .
=_ for boolean equality

checks, we shall define some notation to weaken a Dec into a Bool.

b_c : {A : Set}→ Dec A→ Bool
b yes _ c = true
b no _ c = false

The code for Peterson’s algorithm is given in our embedded com-
mand language in Figure 5.

The process petersons1 is granted access to its critical section
either if petersons2 does not desire entry, or if petersons2 has
already given priority to petersons1 by setting turn to 0.

Now, the diagram we wish to analyse is the parallel composition
of the two processes:

petersons = J petersons1 K ‖ J petersons2 K

First, we need to define the properties we wish to verify, using a
decider for the standard library’s T operator, which makes a Bool
condition into a proposition:

T? : (b : Bool)→ Dec (T b)
T? true = yes tt
T? false = no id

Mutual exclusion states that both inCS variables cannot be simul-
taneously set.

Mutex = AG 〈 T (not (inCS1 ∧ inCS2)) 〉

mutex? : MC Mutex
mutex? = ag (now (T? _))

Starvation freedom is specified as the conjunction of each process
reaching their critical section:
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petersons1 : GCL
petersons1 =

update (λ σ→ record σ { intent1 = true }) ·
update (λ σ→ record σ { turn = 1 }) ·
await (not intent2 ∨ b turn

.
= 0 c) ·

CS1 ·
update (λ σ→ record σ {intent1 = false })

petersons2 : GCL
petersons2 =

update (λ σ→ record σ { intent2 = true }) ·
update (λ σ→ record σ { turn = 0 }) ·
await (not intent1 ∨ b turn

.
= 1 c) ·

CS2 ·
update (λ σ→ record σ {intent2 = false })

Figure 5. Peterson’s algorithm in our embedded GCL

SF = AF 〈 T inCS1 〉 ∧′ AF 〈 T inCS2 〉

sf? : MC SF
sf? = af (now (T? _)) and′ af (now (T? _))

Deadlock freedom is implied by the stronger requirement that all
possible traces lead to successful termination (i.e. all final states
are skip).

Termination = AF 〈 allSkip 〉
where

allSkip : {| ` : GCL × GCL |}→ Set
allSkip {| ` = (a , b) |} = a ≡ skip × b ≡ skip

termination? : MC Termination
termination? = af (now (hd term? sound))

where
term? : {| ` : GCL × GCL |}→ Bool
term? {| a , b |} = b skip? a c ∧ b skip? b c

sound : {| ` : GCL × GCL |}→ T term?→ _
sound {| a , b |} _ with skip? a | skip? b
sound {| a , b |} _ | yes p | yes q = p , q
sound {| a , b |} () | yes _ | no _
sound {| a , b |} () | no _ | _

Now we can define a Property which expresses all of our desired
correctness conditions and will, when evaluated, produce a proof
that Peterson’s algorithm is a correct solution to the critical section
problem.

init : State
init = record

{ inCS1 = false ; inCS2 = false
; intent1 = false ; intent2 = false
; turn = 0
}

tree = model petersons init

petersons-search : Property _
petersons-search = exists $

(mutex? and′ sf? and′ termination?) tree

Once again this proof can be used directly with our depth-invariance
proofs to generalise the correctness result to arbitrary depths:

petersons-correct : tree |= Mutex ∧′ SF ∧′ Termination
petersons-correct

= di-|= (proj2 (check 1000 petersons-search))

7.2 Dekker’s Algorithm and a Note on Fairness
Another critical section solution common in the literature is
Dekker’s algorithm (Dijkstra 2002), the full source of which is
given in Figure 6. The key difference between the two algorithms is
that Dekker’s algorithm relies on busy waiting: rather than using the
turn variable to force the other process into its critical section, here
the processes may be scheduled so that a process continually spins
in a loop, waiting for the other process to clear its intent variable.
Solving this problem requires us to constrain our model of parallel
composition to include some notion of fairness in scheduling. That
is, if an individual process continually can make a transition, it
will eventually be allowed to do so by the scheduler. Without this
notion, a process may spin unendingly in a loop, waiting for access
to its critical section, and in doing so prevent another process from
giving it that access. Dekker’s algorithm depends on fairness in or-
der to be free of starvation. As our current model is not necessarily
fair, it includes these nonterminating, access-starving executions.
And, because of our bounded model-checking approach, we cannot
explore the traces of such a model exhaustively. Sadly, this means
that we can’t prove the strong correctness properties we did for
Peterson’s algorithm. Instead, our framework is reduced to a mere
sanity checker to catch mistakes:

dekkers = J dekkers1 K ‖ J dekkers2 K

dekkers-check : HDec _
dekkers-check = ef (now (T? (inCS1 ∧ inCS2)))

(model dekkers init) 100

This fails to find a proof, because we are searching for a violation of
mutual exclusion and our implementation of Dekker’s algorithm is
correct, but there is no way to prove correctness — our framework
merely failed to find a violation, it could not prove that no violations
existed.

Dekker’s algorithm could be properly verified by using other
model checking techniques, such as LTL model checking using
Büchi automata in the style of SPIN (Holzmann 1997). As fairness
can be expressed as an LTL formula, it is quite straightforward to
integrate fairness into the model. Sadly, as our bounded approach
can only view a fixed k-unfolding of a transition system, it is
unclear how fairness can be integrated into our model checker.

8. Related Work
Our basic framework bears some similarity to the tacticals of
LCF-style theorem provers such as HOL (Slind and Norrish 2008)
and Isabelle (Nipkow et al. 2002). Tactic languages such as LTac
(The Coq development team 2004) and MTac (Ziliani et al. 2013)
also include similar features. The Coq extension ssreflect
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dekkers1 : GCL
dekkers1 =

update (λ σ→ record σ { intent1 = true }) ·
while intent2 (

if b turn .
= 0 c −→ skip

:: b turn .
= 1 c −→ (

update (λ σ→ record σ { intent1 = false }) ·
await (b (turn .

= 0) c) ·
update (λ σ→ record σ { intent1 = true }))

:: []
fi) ·

CS1 ·
update (λ σ→ record σ { turn = 1 }) ·
update (λ σ→ record σ { intent1 = false})

dekkers2 : GCL
dekkers2 =

update (λ σ→ record σ { intent2 = true }) ·
while (intent1) (

if b turn .
= 1 c −→ skip

:: b turn .
= 0 c −→ (

update (λ σ→ record σ { intent2 = false }) ·
await b turn .

= 1 c ·
update (λ σ→ record σ { intent2 = true }))

:: []
fi) ·

CS2 ·
update (λ σ→ record σ { turn = 0 }) ·
update (λ σ→ record σ { intent2 = false})

Figure 6. Dekker’s algorithm in our embedded GCL

(Whiteside et al. 2012) includes several computation-focused tac-
tics for proof-search, and was used in the proof of the four colour
theorem (Gonthier 2008). All of these developments, however, rely
on metaprogramming using an external tactic or proof language.
Our approach embeds the language used to describe proof-search
inside the object language, and therefore does not require any spe-
cial prover support.

Property based testing has been used in theorem provers before,
such as in Isabelle (Bulwahn 2012) and even in Agda’s ancestor
Alfa (Dybjer et al. 2003). Dybjer et al. (2004) even went on to
integrate a model checker with Alfa. In each instance, however,
these tools are external plugins to the proof assistant, and are
used merely to assist manual proving by finding counterexamples
to goals, not as a mechanism for proof-search. More recently,
Paraskevopoulou et al. (2015) implemented and verified a property
based testing library in Coq based on pseudorandom candidate
generation. Unlike our approach, they do not enrich the types of
properties or checkers with their semantic information, but instead
verify each combinator in a more traditional, post-hoc fashion.
Other work focuses on using theorem provers to generate test data
suitable for particular properties (Brucker and Wolff 2013; Carlier
et al. 2012). It would be interesting to integrate these approaches
with our test framework to generate data more intelligently.

Much of the proof automation work in Agda thus far has
been focused on implementing traditional tactic methods, such as
ring solvers (Jedynak 2015), presburger arithmetic solvers (Allais
2015), or first order proof search (Kokke and Swierstra 2014).
These methods typically operate over a deep embedding, where the
proof problem is reified into a concrete data type, either manually
or by Agda’s reflection mechanism (Van Der Walt and Swierstra
2013), and the proof search manipulates these concrete terms. We
have described a more general framework for proof-search based
instead on shallow embeddings, where the proposition under test is
directly represented in the framework.

9. Future Work
Dependent types are the key for certifying proof-search. Now, in-
stead of a test framework simply reporting a counterexample, a test
framework can report a counterexample along with the reason it
doesn’t work, with that evidence verified by the type system. In-
stead of a model checker spitting out a message barely better than
“I think I’m done!” and terminating, it can emit a proof of the

properties it was supposed to verify. These proofs can then be com-
bined with manual reasoning — we can use a model checker as a
tactic!

There are a number of potential research directions that can be
taken in this vein:

• Exploring the world of model checking, and integrating more
sophisticated techniques, such as LTL model checking or BDD-
based model checking, into Agda using our framework. This
would allow algorithms such as Dekker’s algorithm to be veri-
fied.

• Making use of Agda’s reflection mechanism to automate proof
work. For our development, it may be possible to generate the
HDec corresponding to a goal automatically using this feature,
by defining a deeply-embedded representation of propositions
under test.

• Improving Agda’s type-checker evaluation performance, to
make larger-scale developments using computation in the type
checker possible. Currently, every example in this paper checks
in less than a minute, with the exception of petersons-correct,
which takes three minutes on a 2013 MacBook Pro, but get-
ting performance to this point required significant engineering
effort.

It is our hope that a wide variety of proof automation tools can be
integrated into Agda in this way. We strongly believe that this kind
of proof automation should be further investigated.

All of the code developed in this paper, and more besides, is
available as an open-source Agda library on GitHub:

https://github.com/liamoc/me-em
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