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Abstract

A commonly-used technique in dependently-typed program-
ming is to encode invariants about a data structure into
its type, thus ensuring that the data structure is correct by
construction. Unfortunately, this often necessitates the em-
bedding of explicit proof terms within the data structure,
which are not part of the structure conceptually, but merely
supplied to ensure that the data invariants are maintained.
As the complexity of the specifications in the types increases,
these additional terms tend to clutter definitions, reducing
readability. We introduce a technique where these proof
terms can be supplied later, by constructing the data struc-
ture within a proof delay applicative functor. We apply this
technique to TrIp, our new language for Hoare-logic veri-
fication of imperative programs embedded in Agda, where
our applicative functor is used as the basis for a verifica-
tion condition generator, turning the typed holes of Agda
into a method for stepwise derivation of a program from its
specification in the form of a Hoare triple.
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1 Introduction

In traditional proof assistants such as those in the LCF tra-
dition, the types used to model data structures are usually
very simple inductive types. Data invariants are described as
separate predicates, and operations are shown to preserve
these invariants in separately-proven lemmas.

When we set about programming with dependent types,
however, we have nearly unlimited specification power in
the types themselves. Rather than specify a simple inductive
type and prove that data invariants are maintained by every
operation, we can bake the data invariants directly into the
type, thus ensuring that the data invariants are maintained
by construction. For example, this ordered list type from
Lindley and McBride [27] is parameterised by its lower and
upper bounds, requiring n + 1 proofs of element ordering for
a list of length n:

data OList (m n: N) : Set where
Nil : (m < n) — OList m n
Cons: (x:N) — (m < x) = OList xn — OList m n

Another elegant example is the binary search tree data type
of McBride [31], which carries ordering evidence in its leaves:

data BST (m n:N) : Set where
Leaf:(m<n)— BSTmn
Branch: (x:N) - BSTmx— BSTxn— BSTmn

While these definitions seem quite appealing, attempting
to construct even a simple two-element BST value leads to
some rather unsightly results:

tree : BST 23
tree = Branch 3
(Branch 2

(Leaf (s<s (s<s z<n)))
(Leaf (s<s (s<s z<n))))
(Leaf (s<s (s<s (s<s z<n))))

The proofs embedded in the tree are not interesting and triv-
ial to automate, but nonetheless clutter the definition and
make the overall structure harder to discern. This problem
only grows worse as our definitions become more complex.
In Section 3, we introduce an imperative language embedded
within Agda called Trip, where terms are typed by their
correctness specifications. The proofs we must embed in-
side these terms grow to the hundreds of lines of proof for
simple programs of approximately ten lines of code. If these
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proofs were to be nested directly within the code, the overall
program would become nearly unreadable.

We resolve this readability problem by introducing a proof
delay applicative functor. This allows us to first sketch the big
picture, and only fill in details afterwards. The applicative
functor collects any outstanding proof obligations as we
sketch, and requires us to provide proofs of these goals before
ultimately producing the actual data structure.

When applied to Trip programs, this framework becomes
a verification condition generator, allowing programs to be
written without any proofs, all the while gathering the impli-
cations that must be discharged in order to show correctness.

In Section 2, we introduce the proof delay applicative func-
tor in Agda, and provide some small examples of its use. In
Section 3, we introduce the core of the TRIP language, give
it semantics in terms of state-relations, and show sound-
ness of the specifications carried on the types of TRIP terms.
In Section 4, we apply the proof delay applicative to TRip
and create a readable surface syntax for the language using
Agda’s new macro system, and demonstrate our verification
framework on a number of examples. We discuss the design
of both Tr1p and our proof delay applicative in Section 5, as
well as examine related and future work.

2 The Proof Delay Applicative

A computation of a type X which may delay some obligations
until later is written as Delay X. The Delay type is defined
as follows:

record Delay (X : Set €) : Set (Level.suc £) where
constructor Prf
field
goals : List Set
prove : HList goals — X

The field goals is a list of types, containing each of the propo-
sitions that must be proven in order to produce our result
of type X. The prove field is the actual computation of the
X value that requires proof of each of the propositions in
goals.

The type HList is a heterogenous list [21], indexed by a
list of types corresponding to the type for each element:

data HList : List Set — Set where
[]:HList []
i V{SHSS} — S — HList SS — HList (S :: SS)

2.1 Construction

There are two operations to construct a basic Delay com-
putation. The first is pure, which given a value, produces a
Delay computation that returns that value without deferring
any proofs until later:

pure : X — Delay X
pure x = Prf [] (const x)
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The second operation is later, which, as the name suggests,
constructs a Delay X by requiring a value of type X to be
provided later:

later : V{X} — Delay X
later {X} = Prf (X [) A {(x = []]) = x}

2.2 Composition

We compose Delay computations using the application op-
erator ® which applies a Delay computation of a function
to a Delay computation of its argument by requiring the de-
layed obligations of both computations to be satisfied before
computing the function application:

_®_: Delay (A — B) — Delay A — Delay B
Prf goals; prove; ® Prf goals, prove,
= Prf (goals; ++ goals;)
A hl — prove; (takeH hl) (prove, (dropH hl))

Because we concatenate (using ++) the goals of the function
computation with the goals of the argument computation,
when we actually discharge these obligations the incom-
ing HList will be similarly concatenated. We use the func-
tions takeH and dropH to break apart this HList in order to
discharge the obligations of each sub-computation. While
analogous to the conventional take and drop functions on
homogenous lists, the HList versions of these functions have
only one explicit parameter, inferring the size of the two
sublists from the provided type indices:

takeH : V{SS TS} — HList (SS ++ TS) — HList SS

takeH {[]} ys = []
takeH {S:: SS} (x :: xs) = x :: takeH {SS} xs

dropH : V{SS TS} — HList (SS ++ TS) — HList TS

dropH {[]} ys = ys
dropH {S :: S8} (x :: xs) = dropH {SS} xs

2.3 Syntactic Niceties

The two operations ® and pure make the type Delay into
an applicative functor [32]. This allows us to use the idiom
brackets notation of McBride and Paterson [32], as imple-
mented in Agda version 2.6.0, to express Delay computations.
These brackets denote nested Delay applications, for exam-
ple pure f ® a ® b ® c, as pure function applications within
banana brackets, i.e. (f a b c|).

We also define a synonym for the prove field selector using
Agda’s mix-fix syntax, providing a clear syntactic delineation
between overall structure and detailed proof:

structure:_proofs:_done = Delay.prove
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2.4 A Non-monadic Applicative Functor

Unlike many of the applicative functors in common use in
functional programming, our Delay functor is not a monad.
This becomes apparent when we examine the type of a hy-
pothetical monadic bind operation for Delay:

_>=_:Delay A — (A — Delay B) — Delay B

Like ®, the >= operator gives us a way to compose two
Delay computations, but unlike ®, the second computation
is dependent on the results of the first. This means that if
our Delay type were a monad, we could not determine all
the deferred obligations of a computation at once, as some
of these obligations would only be deferred after proofs for
other goals had been provided.

As our HList type is an n-ary generalisation of a simple
non-dependent product type, we have no way to express such
a dependency, and thus Delay is not a monad. We can remedy
this by defining our Delay type more generally, using a single
type for its deferred obligations, rather than a list of types:

record MDelay (X : Set £) : Set (Level.suc £) where
constructor MPrf
field
goals : Set
prove : goals — X

The application operation now combines the goals of the
two subcomputations with a simple product type:

_®_: MDelay (A — B) —» MDelay A — MDelay B
di ® dp = MPrf (goals d; X goals dy)
AL (p1, p2) — prove dy py (prove dz ps) }

Furthermore, the monadic join operator can now be defined
using a 2-type to express the telescopic dependency between
goals:

join : MDelay (MDelay A) — MDelay A
join d = MPrf (2 (goals d) (goals o prove d))
A{(g.&") — prove (prove d g) g’ }

This definition is slightly simpler than that of Delay, but
it results in the type of deferred obligations forming a tree
structure that resembles the structure of the outline we have
already written. We have to describe our structure twice:
once in the outline, and once in the proofs. Furthermore, we
are repeating ourselves for little to no apparent benefit, as
our Delay type is sufficient for even the most sophisticated
examples in this paper.

The greater static knowledge afforded by applicative func-
tors has lead to them being preferred over monads in many
domains for efficiency reasons [7, 28, 29, 35]. In our case,
however, we prefer applicative functors to maintain a clean
separation of concerns between structure and proof.
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2.5 Small Examples
Recalling the ordered list data type introduced in Section 1,

we now wrap each constructor in the Delay applicative, de-
ferring any ordering proofs until later:

nil : Delay (OList m n)
nil = ( Nil later )

_cons_: (x:N) — Delay (OList x n) — Delay (OList m n)
x cons xs = (| (Cons x) later xs |)

These constructors allow ordered lists to be constructed just
as any other list, albeit within the proof delay applicative.
To extract the final OList value, we must provide a HList of
ordering proofs:

example : OList 15
example = structure: 1 cons 2 cons 3 cons 4 cons 5 cons nil
proofs:
s<sz<n
::8<sz<n
i 5<s (s<s z<n)
i 5<s (s<s (s<s z<n))
1 5<s (s<s (s<s (s<s z<n)))
:5<s (s<s (s<s (s<s (s<s z<n))))
+ 1]

done

Our binary search tree example is similar, wrapping the con-
structors in the Delay applicative and deferring the ordering
proofs on Leaf nodes until later:

leaf : Delay (BST m n)
leaf = (| Leaf later |)

branch : (x: N) — Delay (BST m x) — Delay (BST x n)
— Delay (BST m n)
branch x [ r=( (Branch x) [ r|)

With this example we can begin to glimpse the usefulness
of the Delay applicative for describing proof-carrying data
structures. The tree structure of the data is visually apparent,
and the uninteresting proofs are relegated to a separate sec-
tion of code, where they can be conveniently omitted from
this paper in the interest of brevity:

example, : BST 2 10
exampley = structure: branch 3
(branch 2 leaf leaf)
(branch 5
(branch 4 leaf leaf)
(branch 10 leaf leaf))
proofs: {omitted for brevity)
done
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programs P,Q = PQ (seq. composition)
| P+Q (nondet. choice)
| P> (Kleene star)
| g (guard)
| U (state update)

updates Uu e -3

assertions ¢,¥,a,9g € X —B

states 2

booleans B

Figure 1. The language of Regular Imperative Programs

Ordering proofs are easily decidable and therefore not dif-
ficult to automate, either using Agda’s proof search fea-
tures [26] or by exploiting computation within the Agda
type checking process [35]. Initial experiments show that
these techniques are highly compatible with our approach,
discharging all deferred ordering obligations entirely auto-
matically.

3 The Core of TriP

A very similar distinction between structure and proof can be
found in software verification, particularly when verifying
imperative programs using program logics such as those
of Floyd [14] or Hoare [18]. Typically, we would write out
our program in full, interspersed with local assertions about
the state. By using the axioms of the program logic, we then
derive a set of verification conditions, i.e. logical formulae that
together imply that our assertions hold for all executions of
our program. The verification is completed by discharging
each of the verification conditions by proof.

3.1 Regular Imperative Programs

Before verifying imperative programs we must first define
an imperative language in which to write them. We will base
our definitions on the language of regular imperative pro-
grams, so named for its resemblance to regular expressions,
presented in Figure 1. Expressing imperative programs as a
Kleene algebra in this way is not new, but the exact origins
of this language are unclear, emerging from folklore in the
Netherlands and the US during the mid-1970s [8, 13, 17, 39].
The semantics of this language are given in terms of bi-
nary relations on states. For a given program #, we say
(01,02) € [P] iff the state oz could result from executing
% in state 7. The semantics are given as relations, rather
than functions, because we allow our programs to be non-
deterministic, with the choice operator being written as
% + Q. This non-determinism can be constrained by using
guard statements (g), which only execute when the guard
g is satisfied. For example, traditional if statements can be
recovered using this translation:

ifgthenPelseQfi =~ (¢;P)+ (—g;Q)
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Similarly, standard loop constructs such as while can be
encoded using the Kleene star £*, which runs the program
% a non-deterministic number of times:

whilegdoP od = (g;P)*;—g

The language is parametric in the definition of states (Z).
For the verification of small programs or specific algorithms,
states are usually defined to be the mapping of all variable
names to their values, but for large-scale software verifica-
tion projects, this definition could be expanded to include
models of hardware or heap memory [44].

3.2 Typed Regular Imperative Programs

The core of our language TriP is an Agda encoding of the
language in Figure 1, where program terms are typed by
their Hoare logic specifications.

Our development is similarly parameterised by the type
used to represent states. We define an Assertion to be a state-
dependent proposition:

Assertion = { o : State [} — Set

We use Agda’s instance arguments [9] for the state parameter
so that assertions can be written as simple logical formulae
such as n > 0 rather than less readable lambda abstractions
like (Ao — no > 0).

The type of TrIpP programs consists of a pair of Assertions,
denoting its the pre- and post-conditions respectively. If a
term P has type [ ¢ , ¢ ], that means that all executions
of P from a state where ¢ holds will have a final state that
satisfies /. This means that a typing judgement P : [ ¢, ¥ ]
is equivalent to a Hoare triple {¢} P {¢/}. We prove this
theorem with respect to the relational semantics of TRIP in
Section 3.4.

data [_,_] : Assertion — Assertion — Set; where

The types of our terms are based on the Hoare logic rules
for regular imperative programs, given in Figure 2. For se-
quential composition, we have an intermediate assertion
a which is the post-condition of the first program and the
pre-condition of the second:

SEQ:[¢,a]l—=[a,¥]—=[e¢,¢]

Non-deterministic choice requires the two operands to have
the same specification:

CHO:[¢,¢¥]—=[e.¥]—=[0.V]

Because the Kleene star can run the given program any
number of times, including zero, it must maintain the same
assertion (the loop invariant) throughout:

STAR:[@,0]—[¢,0]

Guard statements only successfully execute when the given
guard holds. Therefore, any assertion that follows from the
guard in the pre-condition is a valid post-condition.

GUARD : (g : Assertion) = [ (g— ¢), ¢ ]
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SEQ CHOICE STAR
{p} P {a}  {a}Q{y} ey Py}t Aot Q{y} {o} P {o}
{o} P:Q {y} {o} P+Q{y} {0} P* {0}
CONSEQUENCE
GUARD UPDATE 0 — (p/ {qo/} P {[///} EV R ¢
{9 — ¢} g{e} {poU} U {¢} {o} P {y}

Figure 2. The Hoare logic rules for regular imperative programs.

In Figure 1, state updates are modelled as merely functions
from state to state, with an update axiom in Figure 2 that
expresses the pre-condition in terms of the post-condition.
In Trrp, however, we use a more general type that allows
the update function to make use of knowledge from the
statement’s pre-condition. Here, state updates are a function
from states that satisfy the pre-condition ¢ to states that
satisfy the post-condition
UPD: (39— 2:9) = [¢,¥]

In a delightful confluence of notation, X: ¢ is a dependent
product of a state o and a proof that ¢ holds for o:

>: : Assertion — Set

S:p=2XState(Ao - ¢ { o)

Our state update is general enough to encode other tradi-
tional Hoare logic staples. For example, the rule of conse-
quence in Figure 2, which allows us to move from one as-
sertion to another by proving a logical implication, can be
viewed as a state update that leaves the state unchanged:
CONS:IL:(¢—=¥) = [, ¥]

CONS 9=y =UPD A{(a,.9)—0,(p=Y ol )}
Here II: ¢ is the dual of our earlier 2: ¢. The notation II: ¢
states that ¢ holds under any state:

II:_: Assertion — Set

g =(V{o:Statel} > {ol)

The venerable no-op skip statement is just CONS with a
tautology:

SKIP: [ ¢, 0]
SKIP = CONS (A x — x)

3.3 Semantics

Like the language on which it is based, we shall give the
semantics of TRIP in terms of binary relations on states:

StateRel = State — State — Set

We shall need some operations on state relations, specifically
forward composition (§) and union (U):

_3_:StateRel — StateRel — StateRel
(RsS)o103=3[02](Roy 02X S0303)
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_U_ : StateRel — StateRel — StateRel
(RUS)O'l ()] =RO’1 (o] t")SO'l ()]

In addition, we also define the reflexive transitive closure
R % of a relation R as an inductive datatype:

data _x (R : StateRel) : StateRel where
refl: (Rx) o o
step: Roy 0z = (Rx) 02 03 = (R*) 01 03
These operators allow us to give semantics to sequential
composition, non-deterministic choice and Kleene star re-
spectively:
[L]:[¢,¥]— StateRel
[SEQPQ [-[P]s [Q]
[cHOPQ[-[P]V]Q]
[STARP ]=[P]~*
[GUARD g] = [ gl
[UPDu J=[u]u

The semantics of guard statements [ g ]|g are the subset of
the identity relation where the state satisfies g:

[_]g : Assertion — StateRel
[glgoioz=g{oxo1=0;

State update statements are given semantics simply by inter-
preting the state update function as a relation:

[ Ju: (@ — 2:¢) — StateRel
[uluoy oy =V prf-p — let oy, _=ul(oy, pri-p)

in oy =0y

3.4 Soundness

Our soundness result connects the specification of a program
to its semantics. It states that for any execution of a program
P:[ ¢,y ] from initial state oy to final state oy, if the initial
state o7 satisfies the pre-condition ¢ then the final state o,
will satisfy the post-condition 1.

sound:(P: [,y ) > [P]loroz— e {oilt = ¢ {o2l}

Recall that the typing rule for a sequential composition
P ; Q requires an intermediate assertion « as both the post-
condition for P and the pre-condition for Q. Therefore, sound-
ness for the sequential composition is established simply by
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the composition of inductive hypotheses for P and Q by
transitivity of implication (i.e. function composition):

sound (SEQPQ)(_,p,q) =sound Qqosound Pp

For a non-deterministic choice P + Q, soundness follows
straightforwardly from the inductive hypotheses, depend-
ing on which of P or Q was the origin of the execution in
question:

sound (CHO P Q) (inj; p) = sound P p
sound (CHO P Q) (inj, q) = sound Q g

Soundness for Kleene star is established by a structural induc-
tion on the reflexive transitive closure, effectively unrolling
the inductive step of £* to the equivalent (P; P*) and the
base case to skip:

sound (STAR P) refl =id
sound (STAR P) (step p ps) = sound(STAR P) ps o soundP p

A guard g has a pre-condition of g — ¢ and a post-condition
of ¢. Seeing as the semantics of guards require all executions
to satisfy g, we can establish the post-condition by modus
ponens (i.e. function application):

sound (GUARD g) (p, refl) = _$ p

For state updates, the state update function itself carries
the proof of its soundness. Therefore, the overall soundness
proof must merely observe the determinism of the update
function when interpreted as a relation:

sound (UPD x) (p) = snd-upd x p
where
snd-upd : (u:Z: ¢ — Z: ¢)
S[ulucioa—elo -y {0l
snd-upd u sem prf-¢ with u (_, prf-p) | sem prf-¢
|, prf | refl = prf<y

3.5 Deterministic Constructs

Now that we have defined our core language and established
the soundness of its Hoare logic types, any derivable lan-
guage construct from that sound core is necessarily also
sound. For example, the deterministic conditional if state-
ment we derived earlier can be given a type resembling the
typical Hoare logic rule for if:

IFTHENELSE : (g : Assertion)
—lexg,¥]
—lex-g,¥]
—[e,¥]

The implementation is comprised solely of already-defined
constructs. The translation is essentially the same as the one
in Section 3.1, with the addition of the rule of consequence,
used to make the assertions fit together:

Ay

32

Liam O’Connor

IFTHENELSE g P Q
- CHO (SEQ (SEQ (CONS _, ) (GUARD g)) P)
(SEQ (SEQ (CONS _,_) (GUARD (= g))) Q)

The rule for while loops is also similar to Section 3.1, save
for the addition of the rule of consequence:

WHILE : (g: Assertion) = [gX¢,9p] = [, gX¢]
WHILE g P= SEQ (STAR (SEQ (SEQ (CONS (flip _,))
(GUARD g))
P)
(SEQ (CONS (flip _, )
(GUARD (- g)

4 The Surface of TriP

As can be glimpsed in our core language translations for if
and while, nesting proof terms directly inside the program
whenever the rule of consequence is used produces signif-
icantly less readable results than a typical pen-and-paper
Hoare logic derivation. This is for two main reasons:

o The proof terms do not indicate what the intermediate
assertion being established is, but merely how to prove
it.

o The proof terms clutter the program with a potentially
large number of terms that are not computationally
relevant.

In pen-and-paper Hoare logic derivations, the use of the rule
of consequence is usually left implicit. Instead, the program is
annotated with an assertion, and the proof of the implication
required to establish that assertion is presented afterwards.

For the surface language of Tr1p, we can achieve a similar
effect with our Delay applicative. In our surface language,
use of the consequence rule is indicated by an assert state-
ment that uses the Delay applicative to defer proving the
implication until later:

assert : (¢ : Assertion) — Delay [ ¢, ¢ ]
assert ¢ = (| CONS later |

The user provides the pre-condition ¢ explicitly but the post-
condition is left implicit. This is because of the structure of
many of the Hoare logic rules given in Section 3.2 are such
that the pre-condition is inferrable from the post-condition,
in the spirit of the weakest pre-condition calculi of Dijkstra
[10]. Thus it is more likely that Agda will be able to infer the
post-condition ¢ from the subsequent parts of the program,
and require specification of the pre-condition ¢.

We also define wrappers for sequential composition, if|,
while, and state update in our Delay applicative:

P;Q=(SEQPQ)

if gthen pelse gfi=( (IFTHENELSE g) pq)
while g begin Pend = ( (WHILE g) P)

upd u = pure (UPD u)
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4.1 Initial Attempt at Swap

With the basic constructs of our surface language defined,
we can now attempt to write and verify some basic programs.
One of the simplest is the program that swaps two variables
using a temporary storage variable.

For this program we shall define our state parameter to
be the following record type:

record SwapState : Set where
field
i:N
j: N
temp : N

The specification of a swap procedure is interesting because
it requires the use of logical constants or freeze variables
to refer to the values that the variables i and j had at the
beginning of the program. In Trip, ordinary Agda variables,
acting as metavariables for Trip, can fulfil this purpose:

swp:V{IF:N} - [i=Ixj=F,j=Ixi=]]

Unfortunately, the syntax for state updates in our implemen-
tation still leaves much to be desired. Also, the proof term p
can be seen in the structure section, despite the fact that we
do not want to nest proofs within the program structure:

swp = structure:
upd (A {(c,p) = recordo {temp=i{olt},p};
upd (A{(o,p) > recordo{i=j  {al},ph;
upd (1{ (o, p) > recordo {j=temp{al},p})
proofs: []
done

4.2 Record Update Macros

Ideally, we would like to write simple assignment statements
such as temp := i rather than the syntactically noisy record
update syntax built in to Agda. Because Agda’s record system
does not support bidirectional first class accessors, however,
we cannot define such a statement as an ordinary Agda
definition. Instead, we must turn to meta-programming.

Agda’s meta-programming facilities directly expose the
implementation of parts of the Agda type checker and elab-
orator behind an interface in a monad called TC. This fea-
ture is similar to elaborator reflection in Idris [3] or tactic
metaprogramming in Lean [11]. We define a meta-program
that, given a field name, generates a setter function for the
state record which updates that field:!

fieldSetter : {X: Set} — Name — TC (X — State — State)

We also define a version of the Hoare logic update axiom
from Figure 2 as a special case of our general rule for state
updates. This assignment principle is parameterised by our

!We omit implementation here in the interest of brevity, as it is over 50
lines long.
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setter function and a (possibly state-dependent) value with
which to update our variable:

assn : {¢ : Assertion}
{X: Set}
(e:{ o: State [} — X)
(set: X — State — State)
— Delay [(A{lo} — ¢ {setec )
Mok —e{ol)]
assn eset=upd A{(o,p) — (set(e{ o) o,p}

Lastly, we define an Agda macro to generate the appropriate
code for the syntax a := b. An Agda macro is a TC procedure
that generates a term to unify with a hole, which is always
the last argument given to the macro. Some of the macro’s
arguments can also be quoted, i.e. represented as an explicit
syntax tree. In our macro, the only quoted term is the field
name, used to generate the field setter which is in turn used
as the parameter to our assignment principle:

macro
assnM : {p : Assertion{X : Set}
(e:{ o:State |} — X)
— Name
— Term - TC T
assnM {¢} e fld hole = do
setter < fieldSetter fld
trm «— quoteTC (assn {¢} e setter)
unify hole trm
syntax assnM ba=a:=b

4.3 Swap, Redux

With our new assignment macro, our swap procedure is
much more palatable:

swp’ :V{IJ:N} - [i=Ixj=7,j=Ixi=T]
swp’ = structure:
temp:=i;i:=j;j:=temp
proofs: []
done

Because our assn principle once again allows (weakest) pre-
conditions to be mechanically derived from the post-condition,
no in-program assertions or proofs are necessary here.

4.4 Guarded Assignments

Suppose we now wished to write and verify program that
would compute the sum of all the elements in a list. Our
state would include the list itself, the current total, and a
loop counter i:

record SumState : Set where
field
i N
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Isum: [ T, result = sum arr ]

Isum =

structure:

assert T ;

i:=0;

total := 0 ;

assert (i = 0 X total = 0) ;
while (i < length arr) begin

_J

total := total + (arr ! i<len)
given i<len : (i < length arr) ;
i=(1+1)
end ;
assert (- i < length arr
X total = sum (take i arr)
X i < length arr )

I

proofs:

(A x — refl , refl)

0 (A { (refl , refl) — refl , z<n })

i (A { (i<len , r=sum; , i<len) — i<len })
2 (A, r=sum; , i<len) i<len —

( begin total + (arr ! i<len) =(--)
sum (take i arr) + (arr ! i<len) =( --- )
sum (take (1 + i) arr) )

, i<len })

2 (A { (ni<len , r=sum; , i<len)

— begin total =(---)
sum (take i arr) =(--- )
sum (take (length arr) arr) =( --- )
sum arr m) (]

Figure 3. Verified list sum. Our verification condition generator in action.

arr: List N
total : N

Our imagined program would resemble the following, as-
suming some appropriate list indexing operation !!:

i:=0;

total :=0;

while (i < length arr) begin
total := (total + arr i) ;
i=(1+1)

end

Unfortunately, such a list indexing operation would need a
type like:

M :ListA->N—>A

This type is not inhabited in Agda, where function types
refer to total functions, as there is no valid behaviour if the
given list index is out of range. Even though we know from
our assertions that every indexing is in range, the type of the
function does not reflect this knowledge. Therefore, we shall
use a more precise type instead, which requires evidence
that the index is valid for the list:

1 :V{np—> (Is:List A) > n<lengthls— A
A {n=suc _}(x:1Is)(s<sn)=1Is!'n
1t {n=zero}(x:Is)(s<sn)=x

This corrected indexing operation presents us with a prob-
lem, however, because it means that the expression used to
update the total in our example now needs access to a proof
that the given index is less than the length of the list. We
know that the index is in bounds from our assertions, but
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there is no means in our current syntax to get a proof of that
fact into a variable assignment.

Therefore, we introduce a more general form of assign-
ment syntax, called a guarded assignment. With it, we could
write our total update as:

total := total + (arr ! i<len) given i<len: (i < length arr)

This additional assertion (i < length arr) , called the guard,
is proven to follow from the statement’s pre-condition as a
deferred obligation, separately from the program.

The assignment principle for this syntax is significantly
more general than our principle for simple assignments
(assn). Because the update expression now depends upon
the pre-condition, the pre-condition can no longer be merely
the post-condition composed with the update. Instead, we
require a proof that the pre-condition ¢ implies the guard «,
and a proof that the post-condition ¢ holds after the state
has been updated:

grd : {¢ ¥ a : Assertion}{X : Set}
(e:{o:Statelt = a{ol —X)
(set : X — State — State)
— Delay (II: (¢ — a))
— Delay II: A {lo} = ¢ — (g:a) > ¢ {{set(eg) ol})
— Delay [ ¢, ¥ ]
grd e set p1 p2 = ( update p; p2 |
where update = 1 p—a p—a—y — UPD A where
(0, @) — let
a=gp—aflole
y=9—oa=y{olea
inset(e{{ofa)o,y
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csum : Y{arry}
— [arr = arry X length arr > 0
, length arr = length arry
x (Vi (i < length arr)
— arr [ i ]= sum (take (suc i) arry) )
]
csum {arry} = let
Inv: N — N — Assertion
Invii { o[ = (length arr = length arr)
X (i < length arr)
X (Y j(<izj<i
— arr [ j ]= sum (take (suc j) arry))
X drop i arr = drop i arry
X total = sum (take ir arry)

TyDe ’19, August 18, 2019, Berlin, Germany

in structure:
assert (arr = arry X length arr > 0) ;
i:=0;
total := 0 ;
assert (i = 0 X total = 0 X arr = arry X i < length arr) ;
while (i < length arr) begin
total := total + (arr ! i<len)
given i<len : (i < length arr) ;
assert ( (i < length arr) X Invi (suc i)) ;
arr := (arr [ i<len ]:= total)
given i<len : (i < length arr) ;
assert (Inv (suc i) (suc i) ;
i=(1+1)
end ;
assert (= (i < length arr) X Invii)
proofs: { 100 lines of proof ) done

Figure 4. Cumulative sum

Our macro for the syntax is broadly similar to the macro for
assn, except that it uses the proof delay applicative to defer
proving both of the implications until later:

macro
guardedM : {p i : Assertion}{X : Set}(a : Assertion)
(e:{o:Statef > aflol— X
— Name
— Term - TC T
guardedM {p} {¥} @ e fld hole = do
setter « fieldSetter fld
trm « quoteTC (guarded {p} {{} e setter later later)
unify hole trm
syntax guardedM 7 (A g = v) fld= fld := vgiven g: 7

This syntax is general enough to encompass any assignment
we could need, but it does generate two deferred obligations.
Therefore, the more specialised simple assignment syntax is
still preferable wherever possible.

4.5 Verified List Sum

Having now completed our definitions for the surface syntax
of TRrip, we can now return to our list sum problem. Fig-
ure 3 shows a verified list sum implementation in Trip, with
the proofs slightly expurgated for presentation purposes.
The arrows in the figure show how each proof obligation
is generated, either from an assert statement or a guarded
assignment.

We use an explicit assert at the end of the loop to fix the
loop invariant, which expresses that the total will be the sum
of the first i elements of the list, as well as the book-keeping
invariant that i is at most the length of the list.

4.6 A More Involved Example

Figure 4 shows a more involved example of a verified Trip
program. This program uses the same SumState type as the
previous list sum example, but this time the list is mutated
to contain the running total up to that point in the original
list. For example, the list 3 :: 1:: 7 : 9 :: [] would become
341120 = [] after executing csum.

This example necessitates a few more definitions for deal-
ing with lists. Firstly, we need a way to update a list at a
particular index. Like our previous list getter, this will require
a proof that the desired index is in range:

_[_]:==_:(xs: List A{n: N} — n < length xs > A — List A
_[L]:==_ (x:: xs) {zero} n<len a = a :: xs
_[_]:=_ (xx:: x5) {suc n} (s<s n<len) a = x :: (xs [ n<len ]:= a)

We must also define a predicate that holds iff the given el-
ement is in the given list at a given index, for use in our
specifications and assertions. This is just a dependent pair
of a proof that the index is in range and a proof that the
element is found at that index:

[ ]=_:List A—>N— A — Set
xs[ n]=v=23(n<length xs) A n<len — (xs! n<len) = v

The left hand column of Figure 4 provides the specification
and the loop invariant for our program. The specification
makes use of a logical freeze variable to refer to the original
list before any changes are made. The post-condition states
that the length of the list is unchanged, and that the ith
element of the list will be the sum of the first i + 1 elements of
the original list. As can be seen by the use of Agda quantifiers
inside the specification, the full power of Agda as a logic is
available when specifying TrIp programs.
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{30 {3 j = temp

:[islIxj=F,j=1Ixi=7] 0:[i=Ixj=7F,% ] :[i=Ixj=F,temp=Ixi=7F]
M:[ % ,j=Ixi=7T]

{30 ; {1}0 ; temp =1

{3 i=j; =

j = temp j = temp j = temp

:[i=Ixj=7F, %] 20:[i=Ixj=7F,temp=Ixj=7J] Checked

2M:[ %0, temp=1Ixi=7]

Figure 5. Typed holes as a refinement calculus

The loop invariant for csum is somewhat involved, con-
sisting of five conjuncts, stating:

1. that the length of the list is unchanged,

2. the book-keeping invariant that the loop counter i is
at most the length of the list,

. that the list up to i consists of our desired running
totals,

. that the list from i onward is still identical to the origi-
nal list, and

5. that the variable total is the sum of all elements so far.

The local definition of this loop invariant (Inv) is parame-
terised by the value of the variable i. This allows us to assert
the invariant modulo substitutions for i throughout the loop
(for example, after the assignment to total).

When the loop finishes and i is equal to the length of
the list, the first and fourth conjuncts easily imply our post-
condition. Nonetheless, establishing that the invariant is
maintained and that the post-condition is met required ap-
proximately one hundred lines of Agda proof. As part of
future work, we hope to integrate proof automation into our
framework, hopefully reducing the amount of tedious proof
obligations (see Section 5.3).

5 Discussion
5.1 Typed Holes as Refinement Calculus

One of the main motivations for encoding the specifications
of Trip programs in their types is the ability to apply “hole-
driven” development to derive the program from its specifi-
cation. At any point while writing the program, we can leave
a hole in a location in the program and Agda will present
us with a specification, derived from the surrounding state-
ments and assertions. Figure 5 provides an illustration of this
process for our swap example.
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Morgan [33] defines a minimal imperative language with
specification statements, analogous to holes, which can be
incrementally refined into an implementation through spe-
cialised axioms in a refinement calculus. The experience of
deriving Trip programs from their specifications using typed
holes strongly resembles a tool-assisted version of Morgan’s
refinement calculus.

One difference between Morgan’s refinement calculus and
our specification-typed holes is that Morgan’s specification
statements include a frame, denoting which variables may
be modified by that part of the program. This is to enable
compositional reasoning and to avoid having to explicitly
freeze all unchanged state. Our framework is generic on
the state, however, and does not explicitly model variables,
which makes it difficult to impose frame restrictions on spe-
cific parts of the state. In future, we hope to add procedures
and function calls into Trip, which would necessitate a more
fine-grained handling of state. With that in place, we could
also annotate our specifications with frames.

5.2 Related Work
5.2.1 Separating Proofs from Outlines

While our proof delay applicative functor is novel, there are
some other approaches also aimed at the separation of proofs
and outlines in other proof assistants:

The Coq Program tactic The Coq proof assistant [19] in-
cludes a feature called Program [42] where the algorithmic
structure of a program may be written as normal, but the type
of the program can form a rich specification. Proving that
the program meets the specification is deferred until later,
where the user will write a Coq proof script to discharge
these deferred obligations.
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Predicate subtyping in PVS The proof assistant PVS [37]
has a similar feature to Coq’s Program feature, where types
are annotated with refinements, and the type checker gener-
ates proof obligations for the user to discharge [40].

Both of these approaches are designed as a built-in feature of
the proof assistant, requiring extension to the tactic language
or the type checking algorithm to enable interactive proof
to supplement automatic typechecking for programs with
predicate subtypes. By contrast, our applicative functor does
not rely on language extensions or meta-programming, but
rather encodes the delineation between structure and proof
directly in Agda itself.

Ornaments The ornaments idea, introduced originally by
McBride [30] and subsequently developed by many others [4,
5, 23, 45], is aimed at a similar fusion of internal and external
approaches to proof in dependently-typed languages. Using
ornaments, one can take a basic type and ornament it with
additional type indices or proof obligations, such as turning
a binary tree into a binary search tree. This gives rise to an
isomorphism between the ornamented type and the product
of the plain type and a descriptive structure that carries
all the additional proof obligations. For our binary search
tree example, it would establish an isomorphism between a
binary search tree and the product of a plain binary tree with
a proof that it satisfies the binary search tree invariants. Such
an isomorphism is therefore performing much the same task
as our Delay functor, allowing proofs to be deferred until
after the basic structure is defined.

One of the main advantages of the ornaments approach
is that by starting with a basic type and enriching it with
further details, operations can be defined generically across
many types that share the same structure. With our Delay
functor approach, however, the user starts from a richly-
typed data structure, and defers obligations as-needed. This
is more flexible, in that the user can freely choose to defer
some obligations and not others, but also precludes the kind
of generic programming possible with ornaments.

From a practical standpoint, ornaments do not integrate
with Agda as cleanly: they typically require encoding of
datatypes in a closed universe, and such encodings can be
syntactically cumbersome. Our approach, on the other hand,
is a standard applicative functor, for which Agda has built-in
syntactic conveniences.

5.2.2 Imperative Software Verification

There have been countless other approaches to verifying
imperative software, far too many to list here. We shall nar-
row our focus to those that are based on program logics and
verification conditions.

i,

37

TyDe ’19, August 18, 2019, Berlin, Germany

Hoare logic languages and VCGs The widely-used veri-
fication framework Why3 [12] contains a stand-alone lan-
guage for both programming and specification. It is not em-
bedded in any particular proof assistant, but is capable of
generating verification conditions in a variety of proof as-
sistants, or deferring to automated theorem proving tools
such as SMT solvers. By contrast, TrIP’s partially shallow
embedding within Agda means that it is easily extensible just
by writing Agda definitions, and specifications and proofs
are written using standard Agda code.

The languages Whiley [38] and Dafny [25], as well as the
VCC [6] tool for C programs, all rely on automated theorem
provers exclusively. When these tools succeed, this is very
convenient as no manual proving must be done. When they
fail, however, it can be extremely difficult to coax the verifi-
cation through the theorem prover, even when the user is
capable of proving the verification conditions by hand.

VCGs in Proof Assistants The sivpL language defined by
Schirmer [41] strongly resembles Trip. Like Trip, it is em-
bedded in a proof assistant (specifically Isabelle/HOL [34]).
It is also generic on the type used for state, and shallowly
embeds expressions and state updates. Unlike Trip, however,
it has a deterministic semantics, and includes features like
exceptions and procedures. It includes a verification condi-
tion generator, but it is defined as an Isabelle tactic, and is
intended for use in post-hoc verification of software. Unlike
Trip, it does not facilitate the derivation of a program’s code
from its specification.

SiMpL has been used to give a semantics for C [46] using a
typed memory model [44]. This C semantics was used for the
verification of the seL4 microkernel [22] as well forming the
basis of the automatic abstraction tool AutoCorres [15, 16].
This suggests that the expressivity of SimpL is sufficient for
verification of software at scale, which bodes well for Trip.

The Bedrock framework [2] is another framework that is
embedded inside a proof assistant, this time Coq. Bedrock
targets low-level systems, and supports significant amounts
of proof automation. Like SimpL, it is intended for post-hoc
verification — using a verification condition generator tactic
on a completed program.

Hoare-state indexed monads Swierstra [43] presents a
variant of the state monad where monadic computations
are typed by their specifications. It uses the aforementioned
Program feature in Coq as a miniature verification condition
generator. Unlike Trip, the Hoare-state monad is entirely
shallowly-embedded inside Coq, and does not support non-
determinism.

5.3 Future Work
5.3.1 Other Uses for Delay

The proof delay applicative is very general, and there are
likely many use cases we have not yet considered. In the area



RIGHTS LI

TyDe 19, August 18, 2019, Berlin, Germany

of software verification, verifying concurrent programs [36]
often produces large numbers of proof obligations for non-
interference, which would be better off delayed.

Other uses of the Program feature in Coq might also
be good uses for the proof delay applicative. For example,
an encoding of refinement types in Agda which delays re-
finement obligations until later is a promising avenue for
further research. The wealth of previous work on orna-
ments [4, 5, 23, 30, 45] may also provide some interesting
examples.

5.3.2 Proof Automation

Often we wish to delay proofs until later because they are not
interesting proofs. Certainly, when verifying TRIP programs,
many of the obligations generated are trivial. By integrating
existing Agda proof automation techniques [1, 20, 24] with
Trip, or with the proof delay applicative more generally,
it may be possible to automatically discharge many of the
deferred obligations, only requiring the user to prove those
obligations that could not be proved automatically.

5.3.3 Language Importer

As previously mentioned, the similar language SimpL has
been used to give a semantics to C programs. Designing
a similar language importer around Trip would need to
generate TRIP terms programmatically. Seeing as Agda’s
meta-programming interface does not (yet) support file I/O,
this importer would likely have to be written outside Agda,
generating and pretty-printing Agda text.

5.3.4 State Management and Procedures

For large-scale verifications to be feasible in Trip, we must
extend the language to support procedures and function calls.
Seeing as procedures also have local state, this would ne-
cessitate a more fine-grained handling of state than merely
treating it as a monolithic abstract parameter, particularly
if we wish to support recursion. As previously mentioned,
the refinement calculus of Morgan [33] provides a possi-
ble method to handle procedures, local constants and local
variables by integrating frames into the specification.

6 Conclusion

We have presented TRIP, a proof-carrying imperative em-
bedded language inside Agda which is typed by its specifica-
tions, to allow Hoare logic style derivation and verification
of imperative programs. We presented a soundness proof
of these specification-types against a relational semantics
for the language. To avoid messy proofs and clutter in the
Trrp derivations, we introduced the proof delay applicative,
which allows us to cleanly separate structure from proof not
only in TrIP derivations, but in general.
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The entire development outlined in this paper, including all
proofs and auxiliary definitions, can be found at this address:

http://www.github.com/liamoc/dddp
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