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Economy of Scale
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liamoc@duvel:~$ cat /proc/filesystems | wc -l
31

liamoc@tstvm:~$ cat /proc/filesystems  | wc -l
49
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Economy of Scale

4

liamoc@duvel:~$ cat /proc/filesystems | wc -l
31

liamoc@tstvm:~$ cat /proc/filesystems  | wc -l
49

We don’t want a cathedral, we 
want a factory! DSL!
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Wishlist

• Our DSL needs to:
– Establish key verification properties:

• Type/Memory Safety, Termination, Totality

– Compile to efficient C code
• Destructive updates, resource disposal, no excessive copying, etc.

– Be capable of expressing code for FS operations
• Create file, rename file, etc.
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Wishlist

• Our DSL needs to:
– Establish key verification properties:

• Type/Memory Safety, Termination, Totality

– Compile to efficient C code
• Destructive updates, resource disposal, no excessive copying, etc.

– Be capable of expressing code for FS operations
• Create file, rename file, etc.

• We do NOT need to express everything in DSL
– Can use abstraction
– Define once, verify once (manually)
– These components should be used in every file system

6
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�, x : ⌧ ` t : ⇢

� ` �(x :: ⌧). t : ⌧ ! ⇢

� ` a : ⌧ ! ⇢ � ` b : ⌧

� ` a b : ⇢

NICTA Copyright 2013 From imagination to impact

Simply typed λ-calculus
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x : ⌧ 2 �

� ` x : ⌧
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� ` t : ⌧ �, x : ⌧ ` t

0 : ⇢

� ` let x :: ⌧ = t in t

0 : ⇢

� ` f : ⌧ ! ⇢ � ` x : ⌧

� ` f(x) : ⇢
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First Order Language
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x : ⌧,� ` P
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Memory Management

• Automatic memory management (GC) is too big a 
burden
– Many static auto-MM techniques are also either inefficient or unsafe
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Memory Management

• Automatic memory management (GC) is too big a 
burden
– Many static auto-MM techniques are also either inefficient or unsafe

• But what about manual memory management?
– let x  = allocData ()
    x’ = updateData x
    _  = free x
 in x’
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Memory Management

• Automatic memory management (GC) is too big a 
burden
– Many static auto-MM techniques are also either inefficient or unsafe

• But what about manual memory management?
– let x  = allocData ()
    x’ = updateData x
    _  = free x
 in x’

• But that’s unsafe/inefficient/terrible!
– Types to the rescue!

10
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x : ⌧ ` x : ⌧

�1 ` t : ⌧ �2, x : ⌧ ` t

0 : ⇢

�1�2 ` let x :: ⌧ = t in t

0 : ⇢

�1 ` f : ⌧ ! ⇢ �2 ` x : ⌧

�1�2 ` f(x) : ⇢

NICTA Copyright 2013 From imagination to impact

Linear, First Order Language

11

� ` P

x : ⌧,� ` P

�1�2 ` P

�2�1 ` P

x : ⌧, x : ⌧,� ` P

x : ⌧,� ` P
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Safety!?

– let x = allocData
    y = x
    _ = free x
 in y

– let y = allocData
 in ()

12

x : ⌧, x : ⌧,� ` P

x : ⌧,� ` P

� ` P

x : ⌧,� ` P

– let x  = allocData ()
    x’ = updateData x
    _  = free x
 in x’

x : ⌧, x : ⌧,� ` P

x : ⌧,� ` P

Note: CDSL core syntax, not surface syntax.
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Safety!?
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Safety!?

• This example seems safe, but rejected by linear types:
– let x  = allocData ()
    x’ = updateData x
    _  = free x
 in x’

13
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Safety!?

• This example seems safe, but rejected by linear types:
– let x  = allocData ()
    x’ = updateData x
    _  = free x
 in x’

• But, updateData is not expressible!
– It has to free x or it would be using dereliction
– It could destructively update it...

13
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Safety!?

• This example seems safe, but rejected by linear types:
– let x  = allocData ()
    x’ = updateData x
    _  = free x
 in x’

• But, updateData is not expressible!
– It has to free x or it would be using dereliction
– It could destructively update it...

– let x  = allocData ()
    x’ = updateData! x
 in x’

13
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Two Semantics

• Value Semantics
– Imagine everything is passed by value
– There is no heap (free is a no-op)
– Everything is immutable
– Great for reasoning
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Two Semantics

• Value Semantics
– Imagine everything is passed by value
– There is no heap (free is a no-op)
– Everything is immutable
– Great for reasoning

• Update Semantics
– Some things are stored in the heap
– Destructive updates actually overwrite memory
– Free actually deallocates memory
– Great for implementation
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Two Semantics

• Value Semantics
– Imagine everything is passed by value
– There is no heap (free is a no-op)
– Everything is immutable
– Great for reasoning

• Update Semantics
– Some things are stored in the heap
– Destructive updates actually overwrite memory
– Free actually deallocates memory
– Great for implementation

14

Linear Types allow for both views!
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Unboxed types

• Some things we do want passed by value
– Unboxed types, integers, small structs, etc.
– They shouldn’t be linear!
– Functions shouldn’t be linear either, or we could only call 

them once.

– Simple solution: 
• allow dereliction and contraction for certain types.

15

T• T]
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Case study: Buffer interface

–  make : () -> .Buf
–  free : .Buf -> ()
–  length : .Buf -> (#U32, .Buf)

–  serialise : (.Obj, .Buf) -> (.Obj, .Buf)

–  deserialise : .Buf -> (.Obj, .Buf)

16
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Same!
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–  serialise : (.Obj, .Buf) -> (.Obj, .Buf)

–  deserialise : .Buf -> (.Obj, .Buf)

16

Same!

Same!
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Shareable Values

• We need (nonlinear) “look, don’t touch” references.
–  make : () -> .Buf
–  free : .Buf -> ()
–  length : *Buf -> #U32
–  serialise : (*Obj, .Buf) -> .Buf
–  deserialise : *Buf -> .Obj

17

�1, y : T⇥ ` e : ⌧ �2, x : ⌧, y : T• ` e

0 : ⇢

�1�2, y : T• ` let! (y) x :: ⌧ = e in e

0 : ⇢
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Shareable values

• Unsafe again
–  let buf = make ()
  in let! (buf) buf’ = buf
      in let _ = free buf
          in length buf’

18

�1, y : T⇥ ` e : ⌧ �2, x : ⌧, y : T• ` e

0 : ⇢

�1�2, y : T• ` let! (y) x :: ⌧ = e in e

0 : ⇢
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Shareable values

• Unsafe again
–  let buf = make ()
  in let! (buf) buf’ = buf
      in let _ = free buf
          in length buf’

18

Shareable reference
 leaks!

�1, y : T⇥ ` e : ⌧ �2, x : ⌧, y : T• ` e

0 : ⇢

�1�2, y : T• ` let! (y) x :: ⌧ = e in e

0 : ⇢
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Shareable values

• Unsafe again
–  let buf = make ()
  in let! (buf) buf’ = buf
      in let _ = free buf
          in length buf’

18

Shareable reference
 leaks!

�1, y : T⇥ ` e : ⌧ �2, x : ⌧, y : T• ` e

0 : ⇢

�1�2, y : T• ` let! (y) x :: ⌧ = e in e

0 : ⇢

⇢ safe for T
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Control Flow

• This should be allowed, but it isn’t.
– let x = alloc ()
 in if condition 
       then update(x)
       else x

• This is unsafe
–let x = alloc ()
 in if condition then free(x) 
                 else ()
 

19

x : ⌧, x : ⌧,� ` P

x : ⌧,� ` P
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Control Flow

• This should be allowed, but it isn’t.
– let x = alloc ()
 in if condition 
       then update(x)
       else x

• This is unsafe
–let x = alloc ()
 in if condition then free(x) 
                 else ()
 

19

x : ⌧, x : ⌧,� ` P

x : ⌧,� ` P

�1 ` c : Bool] �2 ` t : ⌧ �2 ` e : ⌧

�1�2 ` if c then t else e : ⌧
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Loops

20
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Loops

• Our one higher order conceit
–  iteration schema are (external) higher order functions

–  for loops are higher order function application (plus a lambda)

20

� ` e : (Arr T )•
� ` map e : (T ! T ) ! (Arr T )•

�1 ` i : (⌧ ! ⇢) ! � �2, x : ⌧ ` s : ⇢

�1�2 ` for x in i do s : �

� ` e : (Arr T )⇥
� ` fold e : (T ! ✏) ! ✏

� ` i : (⌧ ! ⇢) ! � � ` e : �

� ` i with e : ((⌧, �) ! (⇢, �)) ! (�, �)
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Loops

• Multiply all array elements by 2 (destructively)

– let arr’ = for x in map(arr) do x * 2

• Sum up an array of integers:

–let sum = for (x,y) in fold(arr) with 0 
           do (x + y)

• Both at the same time

–  let arr’, sum = for (x,y) in map(arr) with 0 
                 do (x*2,x + y)

21
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Loops

• Unsafe again..
– let y = alloc ()
 in for x in map(arr) 
     do let _ = free(y)
         in x

22

�1 ` i : (⌧ ! ⇢) ! � �2, x : ⌧ ` s : ⇢

�1�2 ` for x in i do s : �
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Loops

• Unsafe again..
– let y = alloc ()
 in for x in map(arr) 
     do let _ = free(y)
         in x

22

�1 ` i : (⌧ ! ⇢) ! � �2, x : ⌧ ` s : ⇢

�1�2 ` for x in i do s : �

�2 does not contain any linear types

Wednesday, 16 October 13



NICTA Copyright 2013 From imagination to impact

Error Handling
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Error Handling

• C has error-handling via a return-code convention
– We can do better!

23
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Error Handling

• C has error-handling via a return-code convention
– We can do better!

• Solution
– Add a separate syntactic layer, statements, above the 

expression layer.
• Move let!, for, let, and if on to the statement level.

– (and anonymous products)

– Statements are different from expressions in that they can 
evaluate to multiple values and they can fail.

23
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Error Handling

• C has error-handling via a return-code convention
– We can do better!

• Solution
– Add a separate syntactic layer, statements, above the 

expression layer.
• Move let!, for, let, and if on to the statement level.

– (and anonymous products)

– Statements are different from expressions in that they can 
evaluate to multiple values and they can fail.

23

s : ⌧s fails ⌧f

s : ⌧s
s : fails ⌧f
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Error Handling
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Error Handling

24

for each i: �i ` ei : ⌧i
�i ` return ei : ⌧i
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Error Handling

24

for each i: �i ` ei : ⌧i
�i ` return ei : ⌧i

�c : ec : err] for each i: �i ` ei : ⌧i
�c�i ` fail ec ei : fails ⌧i
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Error Handling

24

for each i: �i ` ei : ⌧i
�i ` return ei : ⌧i

�c : ec : err] for each i: �i ` ei : ⌧i
�c�i ` fail ec ei : fails ⌧i

�1 : e : Bool] �2 : st : Tt �2 : se : Te

�1�2 ` if e then st else se : Tt t Te
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fails ⌧u ⌧t

NICTA Copyright 2013 From imagination to impact

Error Handling

24

for each i: �i ` ei : ⌧i
�i ` return ei : ⌧i

�c : ec : err] for each i: �i ` ei : ⌧i
�c�i ` fail ec ei : fails ⌧i

�1 : e : Bool] �2 : st : Tt �2 : se : Te

�1�2 ` if e then st else se : Tt t Te

Subtyping!
⌧t fails ⌧u
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Error Handling

• Let (and Let!) only deal with the success case!

    let x = fail(EINVAL, 3) ???

– We add binding (and let!) forms for failure cases too.
– The most interesting form is for the possible-failure case, 

which is also a branching construct:

25

handle s (x. ss) (c x. sf )
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Error Handling

• Let (and Let!) only deal with the success case!

    let x = fail(EINVAL, 3) ???

– We add binding (and let!) forms for failure cases too.
– The most interesting form is for the possible-failure case, 

which is also a branching construct:

25

handle s (x. ss) (c x. sf )

We force you to handle your error cases!
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Datatypes

26
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Datatypes

• CDSL supports product (record) and sum (tagged 
union) types
–   .{ field1 : .T, field2 : .U}
– .< tag1 : T, tag2 : U >

26

Wednesday, 16 October 13



NICTA Copyright 2013 From imagination to impact

Datatypes

• CDSL supports product (record) and sum (tagged 
union) types
–   .{ field1 : .T, field2 : .U}
– .< tag1 : T, tag2 : U >

• Product types are complicated:

26
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Datatypes

• CDSL supports product (record) and sum (tagged 
union) types
–   .{ field1 : .T, field2 : .U}
– .< tag1 : T, tag2 : U >

• Product types are complicated:

26

let sum = operation(x.field1, x.field2)
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Datatypes

• CDSL supports product (record) and sum (tagged 
union) types
–   .{ field1 : .T, field2 : .U}
– .< tag1 : T, tag2 : U >

• Product types are complicated:

26

let sum = operation(x.field1, x.field2) ✗
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Record Types

• Need to smash open a record into its constituent fields

27

let token { f1, f2 } = open rec
    f1’, f2’ = update(f1, f2)
 in close token {f1 = f1’, f2 = f2’ }   
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Record Types

• Need to smash open a record into its constituent fields

27

let token { f1, f2 } = open rec
    f1’, f2’ = update(f1, f2)
 in close token {f1 = f1’, f2 = f2’ }   

for destructive update
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Generating Purely Functional Specs

28

SimpleObj = { a : #U8 , b : #U8, c : .Foo }

simpleobj_example (so : .SimpleObj) : .SimpleObj fails .SimpleObj
= { buf     <- buf_create(42)
               handle code { fail (code, so) }
  ; buf,i   <- let! (so) simpleobj_serialise(buf,so,0)
               handle (code, buf) { free(buf); fail (code, so) }
  ; so2     <- simpleobj_new('_',0)
               handle code { free(buf); fail (code, so) }
  ; so2     <- let! (buf) simpleobj_unserialise(buf, so2, 0)
               handle (code, so2) { free(buf,so2); fail (code, so) }
  ; ok <- let!(so, so2) return (so.a == so2.a && so.b == so2.b)
  ; free(buf)
  ; if not(ok) then { free (so2); fail (32,so) }
               else { free (so); return (so2) }
  }
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Generating Purely Functional Specs

29

SimpleObj = { a : U8 , b : U8, c : Foo }

simpleobj_example (so : SimpleObj) : SimpleObj fails SimpleObj
= { buf     <- buf_create(42)
               handle code { fail (code, so) }
  ; buf,i   <- let! (so) simpleobj_serialise(buf,so,0)
               handle (code, buf) { free(buf); fail (code, so) }
  ; so2     <- simpleobj_new('_',0)
               handle code { free(buf); fail (code, so) }
  ; so2     <- let! (buf) simpleobj_unserialise(buf, so2, 0)
               handle (code, so2) { free(buf,so2); fail (code, so) }
  ; ok <- let!(so, so2) return (so.a == so2.a && so.b == so2.b)
  ; free(buf)
  ; if not(ok) then { free (so2); fail (32,so) }
               else { free (so); return (so2) }
  }
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Generating Purely Functional Specs

30

SimpleObj = { a : U8 , b : U8, c : Foo }

simpleobj_example (so : SimpleObj) : SimpleObj fails SimpleObj
= { buf     <- buf_create(42)
               handle code { fail (code, so) }
  ; buf,i   <- simpleobj_serialise(buf,so,0)
               handle (code, buf) { free(buf); fail (code, so) }
  ; so2     <- simpleobj_new('_',0)
               handle code { free(buf); fail (code, so) }
  ; so2     <- simpleobj_unserialise(buf, so2, 0)
               handle (code, so2) { free(buf,so2); fail (code, so) }
  ; ok <- return (so.a == so2.a && so.b == so2.b)
  ; free(buf)
  ; if not(ok) then { free (so2); fail (32,so) }
               else { free (so); return (so2) }
  }
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Generating Purely Functional Specs

31

SimpleObj = { a : U8 , b : U8, c : Foo }

simpleobj_example (so : SimpleObj) : SimpleObj fails SimpleObj
= { buf     <- buf_create(42)
               handle code { fail (code, so) }
  ; buf,i   <- simpleobj_serialise(buf,so,0)
               handle (code, buf) { fail (code, so) }
  ; so2     <- simpleobj_new('_',0)
               handle code { fail (code, so) }
  ; so2     <- simpleobj_unserialise(buf, so2, 0)
               handle (code, so2) { fail (code, so) }
  ; ok <- return (so.a == so2.a && so.b == so2.b)

  ; if not(ok) then { fail (32,so) }
               else { return (so2) }
  }

Wednesday, 16 October 13



NICTA Copyright 2013 From imagination to impact

Generating Purely Functional Specs

32

SimpleObj = { a : U8 , b : U8, c : Foo }

simpleobj_example (so : SimpleObj) : (Err, SimpleObj) + SimpleObj
= case buf_create(42) of
    Inl code -> Inl (code,so)
    Inr buf  -> case simpleobj_serialise(buf,so,0) of

    Inl (code,buf) -> Inl (code,so)
    Inr (buf,i)    -> case simpleobj_new('_',0) of
      Inl code -> Inl (code,so)
      Inr so2 -> case simpleobj_unserialise(buf, so2, 0) of
        Inl (code,so2) -> Inl (code,so)
        Inr so2 -> let ok = (so.a == so2.a && so.b == so2.b)
                    in if not(ok) then Inl (32,so)

                                    else Inr (so2)
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Current Status

• We have
– A paper about our overall project (not just CDSL) in PLOS 

this year.
– A working (but unverified) compiler to C
– Formalised type system + dynamics on paper
– Formalised dynamic semantics in Isabelle
– Some outdated safety proofs in Agda
– A good feeling about proof work remaining to be done
– A prototype of another DSL for disk (de-)serialisation that 

generates CDSL
– A syntax headache

33
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