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Abstract

Existing proof assistants such as Isabelle (Nipkow et al., 2002) or Coq (Coq Development Team, 2011) are geared
towards large-scale, complicated verification projects, and are not ideal educational tools for topics of a fairly formal
nature, such as the theoretical foundations of programming languages. In particular, they opt for a proof language that
resembles a programming language, rather than the structure typically seen in pen-and-paper proofs. Gentzen is a
simple theorem prover we are developing in Haskell (Marlow Ed, 2010), which will be tightly integrated with its user
interface, using a structural editor for graphically presented proofs. This allows proof scripts to resemble pen-and-paper
proofs, and assists students to focus on the proof, rather than the proof assistant. This report outlines the current state
of Gentzen development, and gives a formal treatment of its proof checker semantics.
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“I tried reading Hilbert. Only his papers published in mathematical periodicals were available
at the time. Anybody who has tried those knows they are very hard reading. ”

— Alonzo Church
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1 Motivation

Logic, proofs, and proof techniques form the foundation for a variety of topics in Computer Science. In particular,
simple, inductively defined structures and proofs about them are pervasive in fields such as programming
language theory and formal methods.

From an instructor’s perspective, the assumption that any given student has the necessary mathematical matu-
rity to understand such material has proven to be highly tenuous. In particular, students often lack the ability
to read and write proofs.

This leads to three possible course curricula, all problematic:

1. A curriculum that simply assumes the necessary mathematical maturity anyway, and suffers from perpet-
ually low enrollments as a result1.

2. A curriculum that attempts to “hide” the mathematical underpinnings of the field, instead focusing
on more “practical” considerations; an approach which Edsger Dijkstra rightly decried as “[lacking] the
courage to teach hard science” and “misguiding students”. Moreover, his prediction that “each next stage
of infantilization of the curriculum will be hailed as educational progress” was sadly correct (Dijkstra,
1988).

3. A curriculum that is forced to reduce the amount of difficult content so that preliminary mathematical
skills can be taught first. Our focus is on this type of course.

When investigating this problem for his own Software Foundations course, Benjamin Pierce advocated the use
of a proof assistant, to enable students to work with proofs and check them without requiring intensive training
and a fast feedback loop with teachers (Pierce, 2009). This approach yielded promising results, enabling his
syllabus to be significantly expanded with no substantial effect on student exam scores.

Pierce chose Coq (Coq Development Team, 2011), a dependently-typed theorem prover based on the calculus
of constructions (Coquand, 1986), as the proof assistant for his course. He encountered a few difficulties with
this choice:

‚ Being based on a constructive logic formed by an intensional type theory, via the Curry Howard correspon-
dence (Howard, 1980), Coq quickly plunges students into deep theoretical waters if they try to encode a
proof by contradiction or extensionality. Explaining the theoretical foundations of programs being proofs
requires a background in type theory and logic, which leads to a difficult conundrum when the goal of the
course is to provide said background in type theory and logic.

‚ The user interface of Coq is not well-suited to beginners: the overall proof obligation can sometimes be
lost in a sea of confusing variable names and seemingly unrelated subgoals.

Based on this information, we have begun implementation of Gentzen, a theorem prover designed specifically
for this educational use-case.

The meta-logic is based on Natural Deduction (Gentzen, 1935), with a higher-order term language based on the
simply typed lambda calculus (Church, 1940). By avoiding Curry-Howard, we eliminate the circular pedagogy
problem that exists with a choice like Coq.

Unlike Coq, Gentzen will be tightly integrated with our own custom structural editor that operates on syntax
trees rather than raw text. This enables us to represent proofs graphically in a way that Coq cannot. Rules are
written in vertical form, proofs are written in the “proof tree” style of Gentzen (Gentzen, 1935), and propositions
can be displayed with any desired notation without fear of ambiguity, as they are never parsed from that format.
In this way, a proof in Gentzen would resemble a proof written by hand on a paper or blackboard, rather than
a series of inscrutable tactics and rules. Thus, we hope to avoid distracting students with learning the operation
of the proof assistant, and help them instead to focus on learning to prove and reason mathematically.

One of the positive aspects Pierce mentions for choosing Coq is its powerful automation facilities. Gentzen,

1 I refer to this as the Engelhart Method
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Term variables P x, y, z, f, g, h, ¨ ¨ ¨
Base Types P T, U, ¨ ¨ ¨
Types τ ::“ T | τ1 Ñ τ2
Free (schematic) variables P Aτ , Bτ , Cτ
Expression heads h ::“ x | Aτ
β-normal expressions e ::“ λpx : τq. h e
Type environments Γ ::“ x : τ

Fig. 1: Syntax of Term Language

by contrast, has little automation — indeed, it has no notion of a tactic script, so automated tactics are difficult
to express. As an experiment, we encoded some of our basic course materials in Agda (Norell, 2008), a proof
assistant which also lacks automation, and have found that the lack of automation is not a hindrance to encoding
the simple definitions and proofs used commonly in our Computer Science courses.

As Gentzen is designed to work on small, simple problems that would be commonly encountered in a tutorial
or exam, there is no need for a highly efficient implementation. This means that, unlike Isabelle or Coq, we
can focus on making the implementation simple and easily understood, and exploit language features to guide
us to a correct implementation more straightforwardly. In addition, as our prover is not designed to be trusted
for safety-critical systems, we do not need to go to LCF-style pains to ensure soundness (Milner, 1972), unlike
Isabelle.

In the world of proof assistant implementation, there are very few tutorials or simple implementations to study.
The core theorem prover components of Gentzen are designed to be the simplest possible implementation of
a proof assistant. This motivates many design decisions, from our use of a simply typed (non-polymorphic)
lambda calculus, to conventional higher order unification (see section 2). In this way, we hope to make the first
version of Gentzen into a tutorial implementation that smooths the road for others that wish to follow us into
this sparsely charted territory.

2 Design and Semantics

There are two main languages at work in any HOL-style theorem prover. The language of terms, which are
usually expressions in some (normalising) lambda calculus, and the language of proof, also known as the meta-
logic, which in our case is based on the style of natural deduction.

2.1 Term Language

The language of terms is defined in Figure 1. For our modest goals, we have chosen to use Church’s λÑ, the
simply typed lambda calculus, equipped with atomic base types.

For our term representation, we want structural equality between terms to equate: terms with cosmetic differ-
ences in names (α-equivalence), terms in different forms but which normalise to the same result (β-equivalence),
and terms with expanded λ-abstractions around variables of function types (η-equivalence). By making this
αβη-equivalence into a structural equality we simplify a number of problems when proof-checking, chief among
them being the unification of higher-order terms.

Making α-equivalence into structural equality can be solved trivially by using a nameless representation such
as de Bruijn indices (de Bruijn, 1972). We present our rules here, however, using a named representation, as de
Bruijn terms can be difficult to read. Our choice of name representation is essentially based on de Bruijn indices,
however we parameterise the type of terms by the type used for indices, which turns terms into a monad, with
substitution as the monadic “bind” function (Bird & Paterson, 1999).
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e1 ¨ e2 “ er

(Application)

h ea ¨ e “ h ea e

λpx0 : τ0, xn : τnq. h ea ¨ e “ rx0 :“ espλpxn : τnq. h eaq

9λpx : τq. e “ er

(Abstraction)

9λpx : τq. λpxi : τiq. h ea “ λpx : τ, xi : τiq. h ea

e1 ˆ̈ e2 “ er

Left fold of application.

λ̂pxi : τiq. e “ er

Right fold of abstraction.

rh :“ esse “ er

(Substitution)

rh :“ ess λpxi : τiq. h1 ea “

#

λ̂pxi : τiq. es ˆ̈ rh :“ essea if h “ h1

λpxi : τiq. h1 rh :“ essea if h ‰ h1
(assuming

Ź

i xi ‰ h)

Fig. 2: Recovering traditional Application, Abstraction, and Substitution

To make β-equivalent terms structurally equal, we remove expressions of the form pλpx : τq. erq ea from our
language. All terms consist of some number of lambda abstractions, a head term (which is essentially a variable),
and some number of argument terms. Thus, all our terms are automatically in β-normal form. We recover the
expressivity of the more traditional, non-normalised representation by encoding it as explicit combinators that
result in β-normal terms. Figure 2 defines application, abstraction and substitution this way.

Note that these functions normalise as per the untyped lambda calculus — they completely ignore types when
normalising. This means that an attempt to construct a non-normalising term will cause these functions to
diverge. As our typed lambda calculus is strongly normalising, we can guarantee that these combinators will
converge when used with well-typed terms. In practice, these combinators are only used in two situations:
performing substitutions, and expansion to η-long normal form. In both of these situations, it is easy to show
that terms have the correct types2.

It is not possible, however, to make any two η-equivalent terms structurally equal, as any sound η-normalisation
is dependent on type-checking information. This necessitates some initial term representation, which is not
necessarily η-normal, on which the type checker operates. The typing rules of our lambda calculus are shown
in Figure 3, along with the expansion rules to η-long normal form, where all function-typed variables are
fully saturated with applications. While our typing rules and η-long normalisation steps are shown here as
separate phases, our implementation interleaves type checking and η-long normalisation. In addition to some
minor performance benefits, this also guarantees that, for type checked terms at least, η-equivalent terms are
structurally equal.

In addition to bound variables, a head term can also be a schematic or unification variable. A schematic variable
Aτ can be freely substituted for any term of type τ , and the user or the unification algorithm is free to do so
at any time. These variables are effectively global in scope, and therefore no α-equivalence problems arise from
using names to represent these variables.

2.2 Proof Language

Our meta-logic must provide for a means of expressing statements in our logic, such as assumptions or proof
obligations, which we refer to collectively as rules, as well as some language for expressing the proofs themselves,
which we call statements.

2 Assuming substitution is sound.
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Γ $ h : τ

(Head typing rules)

Γ $ Aτ : τ
Schematic

px : τq P Γ
Γ $ x : τ

Bound

Γ $ e : τ

(Expression typing rules)

xi X dompΓq “ H pxi : τiq,Γ $ h : αj Ñ τr
for each ej : pxi : τiq,Γ $ ej : αj

Γ $ λpxi : τiq. h ej : τi Ñ τr
Term

Γ $ h
η
ÝÑ eη

(head η-expansion)

Γ $ h : τi Ñ τ xi X dompΓq “ H
Γ $ h

η
ÝÑ λpxi : τiq. h xi

Expand

Γ $ e
ηlnf
ÝÑ eη

(η-long normalisation)

pxi : τiq,Γ $ h
η
ÝÑ e

Γ $ λpxi : τiq. h ea
ηlnf
ÝÑ λ̂pxi : τiq. e ˆ̈ ea

Norm

Fig. 3: Typing and η-long normalisation rules

2.2.1 Rules

Our notion of a rule is derived from the Natural Deduction of Gentzen (Gentzen, 1935), where rules are expressed
as rules of inference of the following form:

abc.
ρ1 ρ2 ¨ ¨ ¨ ρn

e
Name

This rule says that, for all values of the metavariables a, b and c, the conclusion (which is some concrete
proposition e, an expression of type Prop) can be derived if all of the premises ρ1, ρ2, ¨ ¨ ¨ , ρn can be derived.
Note that these premises can themselves be rules. For example, here is an induction principle for Peano style
natural numbers, where 0 : N and succ : NÑ N:

P n.

P p0q

x.
P pxq....

P psucc xq
P pnq

Induct

This rule says that for any P , presumably of type N Ñ Prop, and any n : N, if P p0q is derivable and, for any
x, we can derive P psucc xq from P pxq, then P pnq is derivable.

Note that the vertical dots (
...) are used for the subrule rather than the horizontal vinculum — this notational

difference distinguishes hypothetical derivations like those used above from the stacked rule applications used
in the “proof tree” notation of natural deduction proofs, which will be discussed in Section 2.2.2.

While the graphical interface of Gentzen would display this rule much like it is presented here, we will use
the more compact syntax described in Figure 4 to simplify presentation. In this syntax, the above rule would
be represented by:

ΛpP : NÑ Prop, n : Nq. JP p0q; Λpx : Nq. JP pxqK ñ P psucc xqK ñ P pnq

Figure 5 describes a well-formedness relation on rules, which simply ensures that all terms inside the rule are of
the correct type — the special propositional type Prop. It also defines substitution on rules, and instantiation
of rules with some metavariable assignment.
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Rule names P 9q | 9r | 9s | ¨ ¨ ¨
Rules ρ ::“ Λpx : τq. JρpK ñ e
Statements π ::“ for all x : τ. π

| assuming 9r “ ρ, π
| lemma 9r “ π1, π2
| ψ

Proof Trees ψ ::“ sorry ρ
| show ρ by 9r with σ
| step e by 9r with σ giving ψ

Substitutions σ, θ ::“ rh :“ es

Rule environments ∆ ::“ 9r “ ρ
Context stack Φ ::“ Φ đ φ | ε
Context frame φ ::“ for all x : τ. l

| assuming 9r “ ρ, l

| lemma 9r “ l, π
| lemma 9r “ π, l pρq

| step e by 9r with σ giving ψ l ψ
| flex-flex e1 „ e2, l

Equations ξ ::“ e1 „ e2
Proof states Q ::“ Γ; ∆; ξ; ΦŹ π

| Γ; ∆; ξ; ΦŸ π; ρ

Substitution Image: σ2h “ tx :“ e | x P h, px :“ eq P σu

Fig. 4: Syntax for Rules and Statements

2.2.2 Statements

Suppose we encode in natural deduction rules for implication and conjunction:

A B.
A
u

....
B

A Ą B
ĄuI

A B.
A B
A^B

^I

In natural deduction, a proof of a statement is given by a tree-like application of rules, where each sub-goal
is produced by an application of some instantiation of a rule to the desired conclusion. Here is a proof that,
assuming P pA1q, Q pA2q, and R pA3q, then P ^ pQ^Rq3:

P
A1

Q
A2

R
A3

Q^R
^I JA :“ Q, B :“ RK

P ^ pQ^Rq
^I JA :“ P, B :“ Q^RK

This proof can be read either in a forward direction, establishing the truth of the overall statement from the
assumptions of P , Q and R, or a backward direction, decomposing each proof obligation into smaller obligations
via rule application.

3 Typically instantiating assignments are not given in these proofs, but we include them for clarity
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Γ $ ρ wellformed

pxi : τiq,Γ $ e : Prop for each ρp: pxi : τiq,Γ $ ρp wellformed xi X dompΓq “ H
Γ $ Λpxi : τiq. JρpK ñ e wellformed

Well-formed

rx :“ essρ “ ρr

(Rule Substitution)

rx :“ ess Λpxi : τiq. JρrK ñ e “ Λpxi : τiq. Jrx :“ essρrK ñ rx :“ esse (Assuming x R xi)

instantiatepρ, σq “ ρr

(Rule instantiation)

instantiatepΛpxi : τiq. JρrK ñ e, σq “ Λpxi : τiq. JσρrK ñ σe where dompσq “ xi

Fig. 5: Rule Well-formedness relation and utility functions

Our proof language, fully outlined in Figure 4, mirrors the structure of this proof quite closely4:

for all P : Prop. for all Q : Prop. for all R : Prop.
assuming A1 “ P, assuming A2 “ Q, assuming A3 “ R,

step pP ^ pQ^Rqq by ^I with rA :“ P,B “ Q^Rs

giving show P by A1 with ε;
step pQ^Rq by ^I with rA :“ Q,B :“ Rs

giving pshow Q by A2 with ε, show R by A3 with εq

Here is a proof of P Ą pQ Ą P ^Qq, for all P and Q:

P
u

Q
v

P ^Q
^I JA :“ P, B :“ QK

Q Ą P ^Q
Ą
v
I JA :“ Q, B :“ P ^QK

P Ą pQ Ą P ^Qq
Ą
u
I JA :“ P, B :“ Q Ą P ^QK

This proof demonstrates a number of characteristics of natural deduction proofs. Most notably, rules with
hypothetical derivations in their premises (like ĄI) produce local assumptions in the proof tree, which are only
available to the subgoals produced by that rule application.

These local assumptions prove to be a considerable complication when implementing proof checking, and they
can be quite confusing to struggling students. We solve this problem by restricting proof trees to include no
hypothetical assumptions. Instead, goals which include hypothetical derivations must be solved by directly
instantiating a separate lemma. The above proof would therefore be written in our proof language as:

for all P : Prop. for all Q : Prop.
lemma ` “ assuming α1 “ P,

lemma `1 “ assuming α2 “ Q,

step pP ^Qq by ^I with rA :“ P,B :“ Qs

giving pshows P by α1 with ε, shows Q by α2 with εq,
step pQ Ą P ^Qq by ĄI with rA :“ Q,B :“ P ^Qs

giving pshows JQK ñ P ^Q by `1 with εq,
step pP Ą pQ Ą P ^Qqq by ĄI with rA :“ P,B :“ Q Ą P ^Qs

giving pshows pJP K ñ pQ Ą P ^Qqq by ` with εq

4 Assuming ĄI and ^I are already in scope
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Note: The graphical editor for Gentzen will display these proof objects in a much more visually appealing way,
using vertical rules of inference and proof trees where possible.

2.3 Proof Checking

Most interactive proof assistants, such as Isabelle or Coq, structure proofs as a linear series of tactic applica-
tions to an invisible, temporal proof state. The “proof” that is written is not actually a proof object, but a rough
series of instructions for creating one. Many finer details, such as what instantiating assignments to use when
applying rules, are inferred automatically by the prover as it processes the proof script, usually using unification
or similar techniques.

This design decision makes sense, considering the use cases for which Isabelle and Coq are designed: In many
large-scale verification efforts, the proof objects themselves become intractably large. For our use-cases though,
the added clarity of an explicit proof object is of great benefit, and scalability is not quite so important.

Manually writing out a proof of this nature, including all variable assignments, is an incredibly laborious task.
To ease this burden, we add a unification engine to infer assignments, but expose it to the user as an editor
feature, rather than as a proof tactic.

2.3.1 Unification

Unification is the problem of taking a set of equality constraints of the form e1 „ e2, and devising a substitution
σ, which replaces only free schematic unification variables, such that σe1 “ σe2 for each of the constraints in
the set.

Now, because our term language is a lambda calculus, the simple, decidable first-order unification algorithm
of Robinson (Robinson, 1965) is not sufficient. Instead, we use the semi-decidable, pre-unification algorithm of
Gérard Huet (Huet, 1975).

For a full introduction to higher order unification, de Moura et al. relate Huet’s method to a method based on
explicit substitutions, and provide an approachable introduction to the topic (de Moura et al., 2008).

As our terms are automatically in βη normal form, we can syntactically group equations into three broad
categories:

‚ Rigid-Rigid - Where the head of both sides of the equation are a bound variable.
‚ Flex-Rigid - Where the head of one side of the equation is a unification variable.
‚ Flex-Flex - Where the heads of both sides of the equation are unification variables.

Huet’s algorithm is based on the interleaving of two procedures:

1. simpl, which breaks down rigid-rigid equations into flex-rigid or flex-flex equations.
2. match, which produces a number of possible substitutions for flex-rigid equations, based on two rules:

imitate, which attempts to substitute the unification variable for a term involving the head of the rigid
term, and project, which attempts to reorder the parameters passed into the head to make the flexible
term more closely resemble the rigid term.

Imagine a nondeterministic computation tree which starts with the original constraint set, runs simpl, and
then nondeterministically branches on each substitution returned from match, applying the substitution and
repeating the process, failing if an unsatisfiable constraint is produced, and succeeding if all equations are
flex-flex. This tree is known as a unification tree. The desired substitution σ is simply the composition of each
substitution applied along a successful branch.

As this unification is only semi-decidable, there will be at least one finite path to a success node if the constraints
are satisfiable, but the tree may have branches that are infinitely long, and never reach either success or failure.
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As we have implemented this algorithm in Haskell, a non-strict language, we can conveniently represent this
unification tree simply as a tree, which we traverse in breadth-first order up to a depth limit, looking for success
nodes. The depth limit can be customised by the user.

Note that Huet’s algorithm is merely an method for pre-unification, and so flex-flex equations are not resolved by
this algorithm. While any flex-flex equation is always unifiable, searching for a solution to multiple simultaneous
flex-flex equations is difficult indeed. Therefore, our approach, much like that of Isabelle and similar, is to
simply delay solving nontrivial flex-flex constraints, and leave them as unresolved in the proof state. These
constraints are then added in to later unification problems, which may result in a substitution that changes the
constraint into flex-rigid or rigid-rigid form, and therefore makes it soluble by the simpl and match procedures
documented above.

2.3.2 Semantics

Figure 6 outlines the proof checker in the style of an operational semantics, however each transition is a user
action, either to move forward, backward, or to apply a rule with unification. For this reason, this is an interactive
semantics that describes the changes to the proof state based on the user’s behaviour.

States are either of the form Γ; ∆; ξ; Φ Ź π where Γ is a type environment for all variable introductions in
the context stack Φ, ∆ is a similar rule environment for all known facts (assumptions or lemmas), ξ is a set of
unresolved flex-flex equations, and π is some proof statement that is currently being written or edited; or of the
form Γ; ∆; ξ; ΦŸ π, ρ where the proof statement π has been checked as a valid proof of the rule ρ, returning
into the context waiting in Φ.

This style of presentation, based on Huet’s Zipper (Huet, 1997), easily gives rise to a design for a structural
editor, which edits abstract syntax rather than text. In Isabelle or Coq, the user is equipped with a cursor
into the proof script, after which the code is editable, but before which the code is read-only, as modifying
this “earlier” code without re-checking could make the proof state incoherent with respect to the proof script.
Similarly, our proof editor can consider any statement syntax that is part of the context stack to be inviolate
and read-only, and any proof statements to the right of the Ź to be freely editable.

In this way, applying a rule to an unsolved goal becomes an editing action. A known rule is selected by the user,
which is unified with the current goal, and the instantiation assignment (a subset of the unifier) is saved into
the proof code. This means that, when undertaking normal proof checking, we merely need to check that the
only constraints that remain after the instantiating assignment is applied are part of the unsolved constraint
set ξ, which is achieved via simpl. Thus, unification is not part of the proof checking process, merely part of
the proof writing process.

3 Future Work

3.1 Pattern Unification

Miller’s pattern unification (Miller, 1990) is a subproblem of higher order unification where all terms are of
a specific pattern form, where the position in which schematic unification variables can occur is restricted,
eliminating the need for a nondeterministic search, and providing most general unifiers. This does not cover
all possible unification cases, however it offers a promising means to solve a broad swathe of these outstanding
flex-flex constraints, as well as find solutions to other unification problems more simply. Recent versions of
Isabelle use pattern unification exclusively, and delay any non-pattern terms. Right now, pattern unification
is not implemented in Gentzen, but it our intention to use Miller’s method to improve the unification engine
in the near future.
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Q ÞÑ Q1

(User Action: Step Forward)

x R dompΓq
Γ; ∆; ξ; ΦŹ for all x : τ. π ÞÑ x : τ,Γ; ∆; ξ; Φ đ for all x : τ. lŹ π

ForAllŹ

9r R domp∆q Γ $ ρ wellformed
Γ; ∆; ξ; ΦŹ assuming 9r “ ρ, π ÞÑ Γ; 9r “ ρ,∆; ξ; Φ đ assuming 9r “ ρ, lŹ π

AssumingŹ

Γ; ∆; ξ; ΦŹ lemma 9r “ π1, π2 ÞÑ Γ; ∆; ξ; Φ đ lemma 9r “ l, π2 Ź π1
LemmaŹ

ψi “ ψ0, ψj Γ $ e : Prop p 9r “ ρq P ∆ instantiatepρ, σq “ ρ1 ξ ,ρ ρ
1 „ JrulepψiqK ñ e

Γ; ∆; ξ; ΦŹ step e by 9r with σ giving ψi ÞÑ Γ; ∆; ξ; Φ đ step e by 9r with σ giving ε l ψj Ź ψ0
StepŹ

p 9r “ ρq P ∆ instantiatepρ, σq “ e1 ξ , e „ e1

Γ; ∆; ξ; ΦŹ step e by 9r with σ giving ε ÞÑ Γ; ∆; ξ; ΦŸ step e by 9r with σ giving ε; e
Stepε

Γ $ ρ wellformed
Γ; ∆; ξ; ΦŹ sorry ρ ÞÑ Γ; ∆; ξ; ΦŸ sorry ρ; ρ

SorryŹ

ρ “ Λpxi : τiq. JρpK ñ e p 9r “ ρ1q P ∆ xi X dompΓq “ H
instantiatepρ1, σq “ ρ2 ξ ,ρ ρ

2 „ JρpK ñ e

Γ; ∆; ξ; ΦŹ show ρ by 9r with σ ÞÑ Γ; ∆; ξ; ΦŸ show ρ by 9r with σ; ρ
ShowŹ

ρ “ Λpxi : τiq. JρpK ñ e ρ1 “ Λpx : τ, xi : τiq. JρpK ñ e x R xi

Γ; ∆; ξ; Φ đ for all x : τ. lŸ π; ρ ÞÑ x : τ,Γ z px : τq; ∆; ξ; ΦŸ for all x : τ. π; ρ1
ForAllŸ

ρ “ Λpxi : τiq. JρpK ñ e ρ1 “ Λpxi : τiq. Jρa; ρpK ñ e fvpρaq X xi “ H
Γ; ∆; ξ; Φ đ assuming 9r “ ρa, lŸ π; ρ ÞÑ x : τ,Γ; ∆ z p 9r “ ρaq; ξ; ΦŸ assuming 9r “ ρa, π; ρ1

AssumingŸ

9r R domp∆q
Γ; ∆; ξ; Φ đ lemma 9r “ l, π2 Ÿ π1; ρ ÞÑ Γ; p 9r “ ρq,∆; ξ; Φ đ lemma 9r “ π1, l pρq Ź π2

LemmaŸ1

Γ; ∆; ξ; Φ đ lemma 9r “ π1, l pρaq Ÿ π2; ρ ÞÑ Γ; ∆ z p 9r “ ρaq; ξ; ΦŸ lemma 9r “ π1, π2; ρ
LemmaŸ2

ψr “ ψ0 ψ1
r

Γ; ∆; ξ; Φ đ
step e by 9r with σ

giving ψl l ψr
Ÿ ψ; ρ ÞÑ Γ; ∆; ξ; Φ đ

step e by 9r with σ
giving ψl ψ l ψ1

r
Ź ψ0

StepŸ1

Γ; ∆; ξ; Φ đ
step e by 9r with σ

giving ψl l ε
Ÿ ψ; ρ ÞÑ Γ; ∆; ξ; ΦŸ step e by 9r with σ

giving ψl ψ ε
; e

StepŸ2

Q
đđ
ÞÑ Q1

(User Action: Step Backward)
ÞÑ in reverse

Q
?
ÞÑ Q1

(User Action: Apply Rule with Unification)

p 9r “ Λpxi : τiq. JρpK ñ e1q P ∆ F iτi
fresh σ1 “ rxi :“ F iτi

s unifypσ1e
1 „ e, ξq θ; ξ1 σ “ θ2F iτi

˝ σ1

Γ; ∆; ξ; ΦŹ sorry e ?
ÞÑ θΓ; θ∆; ξ1; θΦŹ step e by 9r with σ giving sorry σθρp

unifypξq σ; ξ1

(Huet’s unification)

simplpξq ξ1

(Huet’s simpl)

ξ , e „ e1

simplpe „ e1q ξ1 ξ1 Ď ξ

ξ , e „ e1
Check

ξ ,ρ ρ „ ρ1

ξ , e „ e1 for each pair ρi, ρ1
i: ξ ,ρ ρi „ ρ1

i

ξ ,ρ Λpxi : τiq. JρiK ñ e „ Λpxi : τiq. Jρ1
iK ñ e1

Checkρ

Fig. 6: Interactive step semantics for proof checking
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3.2 Graphical Editor

The first release of Gentzen will only feature a command-line driven structural editor, with limited graphical
or visual capability. Using the WebKit as a GUI toolkit, we are currently working on a full-featured graphical
editor that will make it possible to use Gentzen in an educational context.

3.3 Data types and other extensions

Gentzen currently has no support for algebraic data types. Basic support could be added, and restricted
recursion schemes and structural induction could be allowed, based on their Church encoding or catamorphism.
Most, if not all of what is necessary to express data types and their associated lemmas is already present in our
meta-logic. The meta-logic of Isabelle is very similar, and highly minimal, with a variety of extensions are built
upon its foundation, including a very flexible data types extension that merely requires proof of monotonicity
(Paulson, 2000). It is likely worth investigating how to make Gentzen’s proof language similarly extensible, to
enable modular additions to the proof language to express things like data types and inductive predicates.

4 Conclusion and Related Work

Besides other prominent theorem provers like Coq (Coq Development Team, 2011), and more importantly
Isabelle (Nipkow et al., 2002), LCF (Milner, 1972) and HOL, which have very similar internal meta logics to
Gentzen, there are several other projects that focus more on pedagogical concerns than the concerns of large
scale verification projects:

‚ Hilbert is a prototype interface for a simple, string-matching based propositional theorem prover. We
wrote Hilbert at the beginning of this project to investigate the feasibility of Gentzen-tree style graphical
interfaces for theorem proving.

‚ Logitext is a web-based interactive theorem prover for logical statements using the sequent calculus,
developed by Edward Yang at MIT. It also visualises proofs using Gentzen trees, however it is restricted
to first-order logic, and does not support defining custom rules or connectives.

‚ JAPE is a Java-based theorem prover that supports Fitch-style proof diagrams, and first-order logic in
natural deduction or sequent calculus.

‚ Pandora is another Java-based natural-deduction theorem prover which uses its own diagram layout,
using nested boxes, and first order logic.

To our knowledge, Gentzen will be the first proof assistant based on a higher order logic designed for educational
purposes. The presence of a full blown higher order logic enables proof work done in Gentzen to be of a
much higher degree of sophistication than comparable first-order tools, which are not sufficient for the kinds
of use-cases outlined by Benjamin Pierce in (Pierce, 2009). For example, expressing an induction principle
or a generalised elimination rule requires variables to stand for propositions, not just objects, which makes
higher-order logic a necessity.

By developing Gentzen, we hope to make it possible for computer science students to study rigorous reasoning
and develop their reasoning skills. This will also help to inject mathematical logic and formal reasoning back into
Computer Science classrooms, where such concepts have been slowly disappearing, without placing an onerous
burden upon teaching staff.

Acknowledgements. I would like to thank Andrea Vezzosi, Arseniy Alekseyev and the UNSW PLS group for
their assistance in teaching me higher order unification. I would also like to thank my supervisors and assessors,
who have been very gracious to agree to my change of project at the last minute.
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