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Abstract

GHC, a Haskell compiler (Marlow Ed, 2010), offers numerous extensions to the standard Haskell type system (Schrijvers
et al., 2009; Yorgey et al., 2012; Kiselyov et al., 2010; Peyton Jones et al., 2007). Each of these extensions is usually
specified only semi-formally, and only in isolation. Very little work has been done examining type system properties when
multiple type system extensions are combined, which is the scenario actually being faced by GHC developers. To address
this, the GHC team published OutsideInpXq, a mostly-rigorous formulation of GHC’s type inference system (Vytiniotis
et al., 2011), which encompasses every type system extension developed for GHC to date.

We formalise OutsideInpXq in a mechanical proof assistant, in order to provide a body of formal work upon which
future extensions can be developed. By using a mechanical proof assistant we not only ensure correctness of our proofs
and complete rigor in our definitions, but also make possible the incremental development of the formal work alongside
the more practically-minded type checker implementation in GHC. This additional accessibility will hopefully prevent
further extensions from being developed without regard to the effect such an extension may have on other parts of the
type system.

Our formalisation is developed in Agda (Norell, 2008). As a dependently typed programming language which enforces
totality, Agda doubles as a proof assistant (Howard, 1980). It is still under heavy development, and is quite experimental.
By formalising OutsideInpXq in Agda, we demonstrate its readiness for type system work, and also provide an example
to encourage further type systems research in Agda.
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1 Introduction

Haskell is a purely functional programming language, with a type system that supports algebraic data types,
type inference, parametric (higher-kinded) polymorphism, and type class constraints (Marlow Ed, 2010). In
recent years, the developers of GHC, a prominent Haskell compiler, have implemented a variety of extensions to
this type system, with the aim of providing greater expressiveness, ease of use, or static verification capabilities.
Some are straightforward, such as generalising type classes to type relations via multi-parameter type classes.
Some require more significant extensions to the type system, such as type families (Kiselyov et al., 2010) and
the earlier functional dependencies extension; some make type inference significantly more difficult and are
major extensions, such as GADTs (Schrijvers et al., 2009), impredicative polymorphism and arbitrary-rank
types (Peyton Jones et al., 2007).

While GHC accommodates all of these extensions simultaneously, the papers that introduce each one discuss
type inference and type checking only in isolation, and sometimes quite informally. This makes the properties
of GHC’s type reconstruction algorithm difficult to determine when multiple extensions are combined.

As a first step towards solving this problem, the GHC team (specifically Vytiniotis, Peyton Jones, Schrijvers
and Suzmann) published OutsideInpXq, a modular type inference system that accommodates all of these
extensions (and possibly more), along with soundness and principality proofs (Vytiniotis et al., 2011).

Our work is intended to more rigorously formalise OutsideInpXq in the dependently-typed programming
language cum proof assistant Agda 2 (Norell, 2008).

1.1 Related Work

The OutsideInpXq system itself is similar in presentation to the HMpXq system, a parameterised formalisation
of ML’s type inference, first presented in (Odersky et al., 1997) and more rigorously formalised in (Pottier &
Rémy, 2005). It is the culmination of years of work and is the latest in a series of type inference systems, starting
with the original inference system for GADTs in Haskell based on “wobbly types” (Schrijvers et al., 2009), right
up to the very similar LHMpXq system presented in (Vytiniotis et al., 2010).

Very little work has been done on formalising type inference in a proof assistant, and what little work that has
been done is primarily focused on type inference for ML. Nipkow and Narachewski have formalised Milner’s
original W algorithm for the HM calculus in Isabelle/HOL and proven soundness (Naraschewski & Nipkow,
1999), and Dubois et al. simultaneously performed a similar verification in Coq (Dubois & Ménissier-Morain,
1999) for the purposes of developing a certified ML compiler (Dubois, 2000). Surprisingly, no type inference
algorithms have been formalised in Agda before. Even more surprisingly, no algorithm which includes support for
GADTs or other advanced type system features has ever been formalised in a proof assistant, to our knowledge.

The techniques we use for term representation are drawn heavily from Bird’s observation of monadic structure
in syntax trees (Bird & Paterson, 1999), a concept first explored in (Bellegard & Hook, 1994). We also draw
several representational tricks from works in generic programming using dependent types (Morris et al., 2004)
and McBride’s work on structurally recursive unification (McBride, 2003), which is used directly in our simple
instantiation.

1.2 Why mechanise OutsideInpXq?

Any handwritten formalisation or proof will likely lack the amount of rigor necessary to be accepted by a proof
assistant, much like a handwritten algorithm is unlikely to be accepted by a programming language compiler.
Formalising OutsideInpXq in a proof assistant is therefore more difficult than it appears at first glance. The
use of a proof assistant requires us to redesign those parts of the system that are not amenable to automated
checking, and to make rigorous all those parts of the original formalisation that are left to the reader’s intuition.

By formalising OutsideInpXq in a proof assistant, we achieve two main goals. Firstly, we make explicit that
which was implicit, and to prove that which was assumed in the original OutsideInpXq paper, ensuring that our
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formal work stands on solid ground; and secondly, we encourage those developing extensions for the type system
to use our work as a foundation for their formalisation, along with the necessary practical implementation of
the new extension in GHC’s type checker. By making our formalisation available as code, we hope to mitigate
the social problem of formal work on a type system being published in a long paper and subsequently ignored1.

1.3 Why Agda?

Agda is an interesting choice of proof assistant for this task. This choice was made not simply because Agda is
the most familiar to the author, but also because Agda is still quite experimental, and the subject of a great
deal of new research. By formalising OutsideInpXq in Agda, we show Agda’s readiness for type systems work,
and provide an example for others researching type systems and considering Agda. Similar work has been done
in Coq (Dubois & Ménissier-Morain, 1999) and Isabelle (Naraschewski & Nipkow, 1999), but our formalisation
is the first such work in Agda.

1.4 A Brief Introduction to Agda

Agda is a programming language with a concrete syntax similar to Haskell, based on the dependent intuition-
istic type theory of Per Martin-Löf (Martin-Löf, 1984). Agda enforces totality by mandating that all functions
be structurally recursive2, meaning that programs correspond to proofs in a higher order intuitionistic logic.
Features include (co)-inductive data types and families, “mix-fix” syntax (Danielsson & Norell, 2011), param-
eterised modules, “View from the left” style pattern matching (McBride & McKinna, 2004) and compile time
proof irrelevance annotations. For a complete tutorial in Agda programming, we defer to the experts (Norell,
2008); the Agda examples in this thesis only require a rudimentary knowledge of Agda’s syntax.

1.4.1 A Key Point of Difference

Unlike other dependently typed theorem provers such as Coq, when working in Agda one does not write a proof
script consisting of a series of proof tactics which transform or generate a proof object (i.e. the dependently
typed program); the program or proof is written directly. This has two main implications:

1. Proof terms are explicit, automation is not available. There is limited opportunity for automated generation
and manipulation of the proof object (i.e. complicated proof tactics) when one writes the proof object
code directly. Recently, a new reflection interface was added in Agda version 2.3.0, which allows Agda
programs to inspect the current goal and generate solutions for it. It offers a kind of automatic generation
of proof objects using Agda itself as a tactic language, however it remains highly experimental and few
tactics are available. Our formalisation does not make use of this feature.

2. Great care must be taken to keep representations manageable. In most theorem provers, the formal prop-
erties we want to prove and the definitions they describe tend to be quite distinct. Because Agda uses the
same language to talk about both, we can combine them in ways that would be impossible in Isabelle/HOL
or unusual in Coq3. Key properties about our definitions are implied by their structure, rather than inde-
pendently proven as lemmas, using a variety of definitional tricks. We employ these tricks extensively for
our representation of names, substitutions, and abstract syntax trees.

1 See the new DataKinds extension (Yorgey et al., 2012)
2 Or, in the case of coinduction, structurally corecursive.
3 Such tricks are certainly possible in Coq, but less commonly employed.
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1.5 Overview

There are three main components to our work, each discussed in a separate chapter:

1. Our approach to OutsideInpXq is discussed in chapter two, where we rework various parts of OutsideInpXq
that were informally presented originally, providing a more rigorous formalisation.

2. Our encoding of the system in Agda, including our method of term representation, is explained in chapter
three. As discussed in the previous chapter, the choice of representation is very important for Agda work.

3. Chapter four introduces a simple instantiation of the X parameter, which allows us not only to sanity-check
our definitions, but also to provide a testbed for experimentation with the system.

Lastly, chapter five discusses future directions for this work, including proof work and instantiating the system
for Haskell itself.

6



2 Making OutsideInpXq Rigorous

OutsideInpXq, published in (Vytiniotis et al., 2011), is an approach to type inference approach that supports
modular type inference and, most interestingly, local assumptions, such as those introduced by pattern matching
on a generalised algebraic data type, or GADT. A GADT is more general than a regular algebraic data type
because its constructors can have substantially more flexible types, including constraints and type variables not
mentioned in the constructed type. This allows for a variety of useful features, such as existential quantification
and type indexing (Schrijvers et al., 2009).

For example, suppose we had the following GADT.

data EqOrShow :: ˚ Ñ ˚ where
IsEq :: pEq τq ñ EqOrShow τ

IsShow :: pShow τq ñ EqOrShow τ

When we pattern match on a GADT such as this, we introduce a local assumption, in this case about the type
variable α:

f :: EqOrShow αÑ αÑ Either String Bool
f IsEq x “ Right px ” xq

f IsShow x “ Left pshow xq

In this case, the local assumption Eq α allows the first alternative to type check, while the local assumption
Show α allows the second alternative to type check. It is important to note that these assumptions must remain
local. This is especially apparent when the constraints are contradictory, for example using equality constraints4:

data IntOrBool :: ˚ Ñ ˚ where
IsInt :: pτ „ Intq ñ IntOrBool τ
IsBool :: pτ „ Boolq ñ IntOrBool τ

A function which pattern matches on this GADT must obviously localise each constraint assumption to each
alternative — it is impossible for α „ Bool and α „ Int unless Int „ Bool, which is of course not the case5.

These local assumptions have historically been difficult to deal with, resulting in lack of principal types. While
the general typing rules in a language may allow terms which lack principal types, OutsideInpXq only infers
principal types. If a term lacks a principal type, then type inference will fail — it is not complete. Most similar
systems, for example HMpXq, are complete but lack support for GADTs and type classes (Pottier & Rémy,
2005).

2.1 Regarding let-generalisation

When it was first published, OutsideInpXq was not the inference system used by GHC. Some significant changes
had to be made to the static semantics of GHC Haskell in order to accommodate it; specifically, generalisation
of inferred types in local let-expressions was removed.

4 More conventionally, these constructors would not use type variables at all, instead each constructor would be parameterised by
the concrete types Int and Bool respectively, however this is desugared into a type variable with an explicit equality constraint
(Schrijvers et al., 2009)

5 At least, it is not the case in languages outside those whose names contain the letter C and not much else.
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Continuing from our earlier example, if we had the following definition:

f :: IntOrBool αÑ αÑ Bool
f x y “ let g z “ not y in

case x of
IsInt Ñ True
IsBool Ñ g pq

Most programmers would expect the binding g to give a type error, as it requires y to be of type Bool, before
that has been established via pattern matching on x6. A principal type does exist, however, for g:

g :: @β.pα „ Boolq ñ β Ñ Bool

That is, the constraint α „ Bool, rather than being rejected, is abstracted over in the inferred type. Then, at
any call site, we must provide evidence that α „ Bool, which can be done in this example thanks to the pattern
matching.

The authors of OutsideInpXq state that abstracting over all inferred constraints imposes a significant com-
plexity cost on the implementation of the type checker, for two main reasons. Firstly, at each call site of such a
generalised expression, the (potentially large) set of constraints that have been abstracted over must be shown
satisfiable, which, if necessary for every locally bound expression, would be difficult to perform efficiently.

Secondly, it becomes impossible to solve constraints “on-the-fly” in a similar manner to Milner’s W algorithm
(Milner, 1978); instead the compiler must generate all constraints and then solve them in discrete phases.
GHC relies on this on-the-fly solving to resolve equality constraints efficiently using mutable type variables
(Peyton Jones et al., 2007). They also observe that the principal types inferred by such a method are often
highly confusing and result in the type checker accepting almost-certainly erroneous code, such as the above
example.

In OutsideInpXq, this generalisation and abstraction of inferred constraints is only performed at the top level,
i.e. where the type environment is empty. Therefore, the difficulties above disappear. At the local level, no
generalisation is performed at all. That is, an (unannotated) let-binding let x “ y in e is equivalent to
pλx. eq y. While a cherished feature of most type inference algorithms since the original W, let generalisation
at a local level turns out to be relied upon very rarely in practice, with a total of only 127 lines needing to
be modified in the base Haskell library consisting of 94,954 lines after this change was made (Vytiniotis et al.,
2010).

2.2 Phases of Inference

As mentioned in the previous section, GHC resolves equality constraints as soon as they can be solved for
efficiency reasons. Specifically, only those constraints which rely on information not available when they are
generated are deferred until after constraint generation for solving. All other constraints are solved immediately.
OutsideInpXq, however, presents inference as two separate phases:

1. Generate constraints (according to a set of syntax-directed rules), combining them into one large overall
constraint.

2. Solve the constraint, using unification and standard constraint-solving methods.

The method used by GHC then can be viewed then as interleaving these two phases, whereas OutsideInpXq
(at least in theory) keeps them distinct. Our formal work is derived from OutsideInpXq, not GHC, and for such
formal work we do not particularly care about the efficiency of type inference, but rather the various properties
we can prove about it. For this reason our formalisation also separates these phases. Indeed, we add additional
phases to this process in order to more clearly separate the solver phase; as well as to deal with our extended
constraint language, discussed in the next section.

6 Note that not :: Bool Ñ Bool
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Term variables P x, y, z, f, g, h
Type variables P a, b, c
Unification type variables P α, β, γ, δ
Data constructors P K
Type constructors P T

υ ::“ K | x
Expressions e ::“ υ | λx. e | e1 e2

| case e of tK x̄Ñ eu
| let x “ e1 in e2 | let x :: σ “ e1 in e2

Type schemes σ ::“ @ā. Qñ τ
Programs prog ::“ f :: σ “ e, prog | f “ e, prog | ε
Constraints˚ Q ::“ ε | Q1 ^Q2 | τ1 „ τ2 | ¨ ¨ ¨

Extended constraints C ::“ Q | C1 ^
1 C2 | Dβ̄. Q Ą C | Fα. C

Monotypes˚ τ ::“ tv | T τ̄ | τ1 Ñ τ2 | ¨ ¨ ¨

tv ::“ a
Environments Γ ::“ ε | pυ : σq,Γ
Axiom Schema˚ Q ::“ ¨ ¨ ¨

Γ0 : Types of data constructors˚
K : @āb̄. Qñ τ̄ Ñ T ā

˚ — part of the parameter X

Fig. 1: Our updated syntax, slightly extended from OutsideInpXq

2.3 The Extended Constraint Language

Constraint generation in OutsideInpXq is specified independently of the exact constraint system or type system
used — the constraint and type terms are part of the X parameter. Clearly, some intuitive conditions must be
met by these components, summarised in two additional parameters: an entailment relation of global constraint
schema to locally inferred constraints, and certain simplifier conditions that ensure that the provided solver
behaves consistently with this entailment relation. Specifically, the constraint system must include constraint
conjunction and equality constraints (see fig. 1) that behave as one would expect, and any locally inferred
constraints must be resolved trivially if they restate an axiom in a global constraint scheme (see fig. 2). This
parameterisation of the system is similar to HMpXq, the parameterised extension of ML’s type inference pre-
sented in (Odersky et al., 1997)7, with the addition of global axiom schema, which are designed to accommodate
Haskell’s type classes. Specifically, type class instances can generate top-level implication constraints such as
Show αñ Show rαs. In OutsideInpXq, these top-level constraints are expressed in axiom schema and do not
form part of the main constraint language.

In order to deal with local assumptions, OutsideInpXq extends Q, the original constraint language in X, to
an algorithmic constraint language C. C is just Q with an additional form, Dβ̄. pQ Ą Cq, where Q is a local
assumption, C is a constraint, and β̄ are the only variables that can be unified while solving the constraint
Q Ą C. The local assumption is defined as a constraint in the original constraint language Q specifically, rather
than the larger C, as all local assumptions come from the constraint clause of a generalised type signature,
either provided by the user or in the type of a generalised data constructor; they are not generated locally by
the algorithm itself.

Our presentation of this extended language differs from the presentation in OutsideInpXq in several respects.
One minor change is that we make the separation between the languages C, Q and Q much more clear. In
particular, we add a new form of conjunction to the extended language C, written φ ^1 ψ, as the conjunction
inherited from Q can, technically, only contain Q-constraints. In addition, we have changed Q, the language
of axiom schema, so that it no longer includes all of Q. Instead, we make no assumptions about the forms
that Q schema may take, and have reformulated the entailment relation to require both a Q-constraint and a
Q-constraint as context (see fig. 2). We have also added to the entailment relation requirements for conjunction
elimination rules as well as a rule to deal with ε-constraints. These rules were inexplicably absent from the
original presentation, despite being implicitly used repeatedly in the soundness proof presented in the same
work.

7 or the more rigorous formalisation presented by Pottier and Remy in their chapter of Advanced Types and Programming Languages
(Pottier & Rémy, 2005)
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Q;Q , Q

part of the parameter X, subject to the following requirements:

Tautology Q;Q , ε pR1q

Reflexivity Q;Q , Q pR2q

Transitivity Q;Q1 , Q2 and Q;Q2 , Q3 implies Q;Q1 , Q3 pR3q

Substitution Q;Q1 , Q2 implies θQ; θQ1 , θQ2 where θ is a type substitution pR4q

Conjunction intro. Q;Q , Q1 and Q;Q , Q2 implies Q;Q , Q1 ^Q2 pR5q

Conjunction elim. Q;Q1 ^Q2 , Q1 pR6q

Q;Q1 ^Q2 , Q2 pR7q

Type eq. reflexivity Q;Q , τ „ τ pR8q

Type eq. symmetry Q;Q , τ1 „ τ2 implies Q;Q , τ2 „ τ1 pR9q

Type eq. transitivity Q;Q , τ1 „ τ2 and Q;Q , τ2 „ τ3 implies Q;Q , τ1 „ τ3 pR10q

Type eq. substitutivity Q;Q , τ1 „ τ2 implies Q;Q , rα ÞÑ τ1sτ „ rα ÞÑ τ2sτ pR11q

Q;Qgiven;αtch
simp
$§ Qwanted  Qresidual; θ

part of the parameter X, subject to the following requirements:
Touchable-aware: dompθq Ď αtch

Soundness: Q;Qg
simp
$§ Qw  Qr; θ implies Q;Qg ^Qr , θQw

Principality: (Guess-freedom) Q;Qg
simp
$§ Qw  Qr; θ implies Q;Qg ^Qw , Qr ^ Eθ

where Eθ “ tpα „ τq | rα ÞÑ τ s P θu.

Fig. 2: Entailment relation and simplifier conditions

The constraint solver is also part of the parameter X and therefore can only act on constraints in Q, not the
extended constraint language C. Therefore, OutsideInpXq includes additional machinery to solve implication
constraints given a solver for Q-constraints. In OutsideInpXq, and in this thesis, the term simplifier is used to
describe the Q-solver, whereas the term solver is reserved for the top-level C -solver.

2.4 Fresh Variables

A common sin against mathematical rigor often committed in type inference literature is that of the magi-
cally fresh variable. This is an example taken from a constraint generation rule (for lambda abstractions) in
OutsideInpXq:

α fresh Γ, px : αq $§ e : τ  C

Γ $§ λx. e : pαÑ τq C

These fresh variables must be globally unique and in scope throughout the entire program, despite being
summoned ad-hoc as constraints are generated; they must be completely unused variable names before being
introduced here. Narachewski and Nipkow’s approach to this problem, when they verified W in Isabelle, was to
thread an infinite source of known globally unique variable names (i.e. a natural number n for which all names
in tNi|i ě nu are unique and unused) as state through the program, removing a name from the source when
a fresh variable was introduced (i.e. incrementing n) (Naraschewski & Nipkow, 1999). While this approach is
perhaps closer to how W would be implemented in a compiler, it has a certain inelegance that complicates
Agda definitions of these rules considerably. Specifically, the rules would need to live within a state monad,
introducing needless dependency between rule invocations which would otherwise be independent.

Our approach is instead to reuse some machinery that is already present in OutsideInpXq for local assumptions.
We shall extend the constraint language slightly while generating constraints, and simplify it again before solving
them. Specifically, we add another form to the extended constraint language C: an (existential) quantifier for
unification variables, which we denote with Fα. C (F is used here rather than D to distinguish between the two
existential quantifiers in C; D is for local assumptions, and F is for unification variables). This approach is similar
to the existential quantifiers used in (Pottier & Rémy, 2005).

To use these quantifiers, we must first rearrange the constraint generation rules so that the type is viewed as
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∆; Γ $§ e : τ  C

pv : @ā. Q1 ñ τ1q P Γ
∆; Γ $§ v : τ  Fᾱ. ra ÞÑ αsQ1 ^

1
pτ „ ra ÞÑ αsτ1q

VarCon

α1, α2, α3,∆; Γ $§ e1 : α1  C1 α1, α2, α3,∆; Γ $§ e2 : α2  C2

∆; Γ $§ e1 e2 : τ  Fα1. Fα2. Fα3. C1 ^
1 C2 ^

1
pα1 „ pα2 Ñ α3qq ^

1
pτ „ α3q

App

α, β,∆; Γ, px : αq $§ e : β  C

∆; Γ $§ λx. e : τ  Fα. Fβ. C ^1 pτ „ pαÑ βqq
Abs

α1, α2,∆; Γ $§ e1 : α1  C1 α1, α2,∆; Γ, px : α1q $§ e2 : α2  C2

∆; Γ $§ let x “ e1 in e2 : τ  Fα1. Fα2. C1 ^
1 C2 ^

1
pτ „ α2q

Let

α1, α2,∆; Γ $§ e1 : α1  C1 α1, α2,∆; Γ, px : α1q $§ e2 : α2  C2

∆; Γ $§ let x :: τ 1 “ e1 in e2 : τ  Fα1. Fα2. C1 ^
1 C2 ^

1
pτ „ α2q ^

1
pα1 „ τ 1q

LetA

σ1 “ @ā. Qñ τ 1 Q ‰ ε or ā ‰ ε ᾱ, β1, β2,∆; Γ $§ e1 : β1  C
C1 “ Fᾱ. Dε. pra ÞÑ αsQ Ą C ^1 β1 „ ra ÞÑ αsτ 1q β1, β2,∆; Γ, px : σ1q $§ e2 : β2  C2

∆; Γ $§ let x :: σ1 “ e1 in e2 : τ  Fβ1. Fβ2. C1 ^
1 C2 ^

1
pτ „ β2q

GLetA

α, β, γ̄, δ̄,∆; Γ $§ e : α C

pKi : @āb̄. Qi ñ τ̄i Ñ T āq P Γ α, β, γ̄, δ̄, ρ̄,∆; Γ, pxi : rb ÞÑ ρsra ÞÑ γsτiq $§ ei : δi  Ci

C 1i “

#

Ci ^
1 δi „ β if b̄i “ ε and Qi “ ε

Fρ̄. Dε.prb ÞÑ ρsra ÞÑ γsQiq Ą Ci ^
1 δi „ β otherwise

∆; Γ $§ case e of tKi x̄i Ñ eiu : τ  Fα.Fβ.Fγ̄.Fδ̄. C ^1 pT γ̄ „ αq ^1 p
ľ

C 1iq ^
1
pτ „ βq

Case

Fig. 3: Constraint Generation Rules (using our new quantifier)

input, rather than output. This does not affect the algorithm significantly — types are always just a single
metavariable8, and the exact form of the inferred type is instead indicated by an explicit equality constraint.
This means that the only place where these new unification variables are mentioned is within the generated
constraint, and not within the type:

α fresh β fresh Γ, px : αq $§ e : β  C

Γ $§ λx. e : τ  C ^ pτ „ pαÑ βqq

Then, we can simply add an environment of available type variables ∆ to the constraint generation judgement,
and replace the fresh variable introductions with quantifiers (where α and β are not in the environment ∆):

α, β,∆; Γ, px : αq $§ e : β  C

∆; Γ $§ λx. e : τ  Fα. Fβ. C ^ pτ „ pαÑ βqq

The changes required to most of the other rules are in a similar vein (See fig. 3 for a full set). This more
rigorous formulation of constraint generation is equivalent to the original presentation, with the added benefit
of a formalized notion of fresh variables, and less ambiguity in the presentation of the constraint languages.

8 This does not lead to ambiguity dangers, as the system is still syntax-directed
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C
pnx1
ÞÑ C

x^1 pFα. yq
pnx1
ÞÑ Fα. x^1 y Prenex1

pFα. xq ^1 y
pnx1
ÞÑ Fα. x^1 y Prenex2

Dβ̄. Q Ą pFα. xq
pnx1
ÞÑ Dβ̄α. Q Ą x Prenex3

C
pnx˚
ÞÑ C

C
pnx˚
ÞÑ C

Refl*
C1

pnx1
ÞÑ C2 C2

pnx˚
ÞÑ C3

C1
pnx˚
ÞÑ C3

Trans*

We say C pnx
ÞÑ C 1 iff C pnx˚

ÞÑ C 1 and there exists no C2 such that C 1 pnx1
ÞÑ C2

Fig. 4: Prenexer rewrite rules, and their reflexive transitive closure

2.5 The Prenexer

Of particular interest is the interaction between local assumption forms and these fresh variable quantifiers.
Here is a rule from the original OutsideInpXq formulation where a user has specified a general type for a local
let binding:

σ1 “ @ā. Q1 ñ τ1 Q1 ‰ ε or ā ‰ ε Γ $§ e1 : τ  C β̄ “ fuvpτ, Cq ´ fuvpΓq
C1 “ Dβ̄. pQ1 Ą C ^ τ „ τ1q Γ, px : σ1q $§ e2 : τ2  C2

Γ $§ let x :: σ1 “ e1 in e2 : τ2  C1 ^ C2
Original

This rule introduces a local assumption constraint where the variables bound by the quantifier (Dβ̄) are all free
unification variables introduced when generating the constraint for e1 and τ . With our new quantifiers, there
will never be any free unification variables under any circumstances (as any unification variables introduced
would have been bound within the constraint C), which makes the updated rule look somewhat odd — the
existential quantifier in the local assumption form is empty9:

σ1 “ @ā. Qñ τ 1 Q ‰ ε or ā ‰ ε ᾱ, β1, β2,∆; Γ $§ e1 : β1  C

C1 “ Fᾱ. Dε. pra ÞÑ αsQ Ą C ^ β1 „ ra ÞÑ αsτ 1q β1, β2,∆; Γ, px : σ1q $§ e2 : β2  C2

∆; Γ $§ let x :: σ1 “ e1 in e2 : τ  Fβ1. Fβ2. C1 ^ C2 ^ pτ „ β2q
GLetA

We resolve this oddity by introducing a new constraint simplification phase, which is run before solving, called
the prenexer. The prenexer is responsible for eliminating all of the new F-quantifiers introduced by constraint
generation, so that solving can proceed unchanged from the original OutsideInpXq formulation. This phase is
called the prenexer because it moves the F-quantifiers leftward, towards the front of the constraint expression
— a logical formula is considered to be in prenex normal form if all quantifiers are moved to the leftmost,
outermost position possible.

Despite the name, the prenexer does not necessarily leave constraints in such a normal form due to the presence
of other quantifiers in the formula, specifically the existential quantifiers introduced by local assumption con-
straints. Observe the rule Prenex3, where a new type variable is bound within an implication constraint. Here,
the variable bound by the Fα quantifier is added to the set of variables bound by the existential quantifier Dβ̄.
This rule therefore ensures that local assumption forms again bind all unification variables introduced within
the implication, as they do in the original OutsideInpXq formulation.

Ordinarily with a explicitly named representation of type variables, we would have to take care when performing
these rewrites that no name conflicts occur. As our representation is based on de Bruijn indices, this is quite

9 We also have to introduce fresh unification variables for all those bound in the user’s general type (ā). As they are bound outside
the implication constraint, they are treated as skolem variables within it. Therefore, this change does not affect the semantics of
the original rule.
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implication constraints I ::“ ε | DI ᾱ. Q Ą C | I ^I I
separated constraints C ::“ Q ¨ I

implicrC1 ^
1 C2s “ implicrC1s ^

I implicrC2s

implicrQs “ ε

implicrDβ̄. Q Ą Cs “ D
I β̄. Q Ą seprCs

simplerC1 ^
1 C2s “ simplerC1s ^ simplerC2s

simplerQs “ Q

simplerDβ̄. Q Ą Cs “ ε

seprCs “ simplerCs ¨ implicrCs

Q;Qgiven;αtch
solv
$§ Cwanted  Qresidual; θ

Q;Qg; ᾱ
simp
$§ Q Qr; θ @ppD

I β̄i. Qi Ą Ciq P Iq. Q;Qg ^Qr ^Qi; β̄i
solv
$§ Ci  ε; θi

Q;Qg; ᾱ
solv
$§ Q ¨ I  Qr; θ

Fig. 5: Solver, separated constraints and separator functions.

mechanical. As each quantifier is moved out, we adjust the indices within each expression accordingly, thus
ensuring that names remain unique (See chapter 3 for details).

Once all F quantifiers have been moved by the prenexer, we will have an expression of the form Fᾱ. C where C
consists only of the extended syntax used originally in OutsideInpXq, and all fresh names introduced by the
constraint generation have been made globally unique — exactly the semantics of the informal fresh constructor
used previously. Therefore, after rewriting, we can simply pass C to the subsequent solver phase, using ᾱ as the
set of variables the solver may unify (see the top level rules in fig. 6).

2.6 Solver and Separator

Our presentation of the solver infrastructure is somewhat different to the solver infrastructure in the original
paper. Here we introduce a new form of separated C-constraint, denoted C, which contains a vanilla Q-constraint,
already solvable by the provided simplifier, and a special I constraint, which contains only local assumption
implications (whose bodies are, in turn, separated C constraints, see fig. 5). Our solver operates on these
separated constraints rather than the C-constraints directly, so we introduce a function sep : C Ñ C, defined
in terms of helper functions simple : C Ñ Q and implic : C Ñ I, which forms an additional phase in the
inference algorithm.

In the original presentation of the OutsideInpXq solver, the separation of constraints into simple and implica-
tion components was performed inline with the main solver rule, rather than in a separate phase. This makes
the termination argument for the main solving rule slightly less clear, as it must be established that, for all C,
simplerCs and implicrCs are no larger than C itself. This, while obvious to a human observer, is not so obvious
to a proof assistant. We simply sidestep any termination troubles by encoding the separation of constraints as
a separate phase, rather than interleaving them as in the original presentation.

Our main solving judgement is of the form Q;Qgiven;αtch
solv
$§ Cwanted  Qresidual; θ, which can be read as,

“Given the axiom scheme Q and constraint Qgiven, the constraint Cwanted is simplified to Qresidual producing
the substitution θ where dompθq Ď αtch.” Note that while the solver is not obliged to solve all constraints,
the remaining residual constraint is a Q-constraint, not a C-constraint, which means that, at the very least, all
implication constraints must be resolved. This is important, as the constraints left residual from the solver are
abstracted over when generalising on top-level definitions (see fig. 6), and C constraints do not form part of
the constraint language available to the user of the language — It would be highly unusual for a type inference
algorithm to provide type signatures that the user of the language could not express themselves!
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Q; ∆; Γ $§ prog

Q; ∆; Γ $§ ε
Empty

ā,∆; Γ $§ e : τ  C C
pnx
ÞÑ Fβ̄. C 1 Q;Q; β̄

solv
$§ seprC 1s ε; θ

Q; ∆; Γ, pf : @ā. Qñ τq $§ prog
Q; ∆; Γ $§ f :: p@ā. Qñ τq “ e, prog

BindA

γ,∆; Γ $§ e : γ  C C
pnx
ÞÑ Fβ̄. C 1 Q;Q; γ, β̄

solv
$§ seprC 1s Qr; θ

ᾱ “ free unification variables in Qr, θγ Q; ∆; Γ, pf : @ᾱ. Qr ñ θγq $§ prog
Q; ∆; Γ $§ f “ e, prog

Bind

Fig. 6: Top level algorithmic rules.

2.7 Top Level Rules

Our presentation of the top-level rules differ significantly from the original OutsideInpXq presentation, in order
to accommodate the other changes we have made to the system. In particular:

‚ As we view the type in the constraint generation rule as input rather than output, we do not need to
add an equality constraint in the rule BindA, reconciling the provided type signature with the generated
type. Instead, we simply pass the provided type directly in to constraint generation. Similarly, we cannot
simply use the type returned by constraint generation in the rule Bind, but must instead introduce a new
“fresh” type variable γ, use it for constraint generation, then apply the solution substitution θ to it in
order to determine the type of f .

‚ As we now have an explicit notion of available type variables in the environment ∆ for constraint gener-
ation, we add a similar environment here.

‚ Constraints must be prenexed and separated before being solved, which necessitates some additions to
the Bind rules.

Despite the added rigor in our version of the OutsideInpXq system, some informality still remains in these
definitions - in particular, the possibility of name conflicts is ignored, assertions are made informally about
substitution domains, and the rule Bind in figure 6 relies on an informally specified “free unification variables”
operation. Naturally, in order to formalise this system in a proof assistant, we still must resolve these issues. All
of these problematic elements are eliminated via our representation of terms and names, discussed in the next
chapter.
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3 Encoding Types and Terms

Constraints and expressions cannot be expressed in Agda simply as a series of data types, because the exact
structure of these terms is dependent on the parameter X. C-constraints, which are not part of X, can contain
Q-constraints, which are part of it. Similarly, expressions, not part of X, can contain types, which are.

We use Agda’s module system to represent this parameterisation, providing a record type X containing all
definitions within the parameter as an argument to our modules. Here is a sketch of the Agda code used to
represent such a parameterisation:

record X : Set1 where
field Type : ¨ ¨ ¨
field QConstraint : ¨ ¨ ¨
¨ ¨ ¨

module OutsideIn px : Xq where
open Xpxq

¨ ¨ ¨

data Constraint ¨ ¨ ¨

data Expression ¨ ¨ ¨

(In all future code, we will use sans-serif font to refer to elements of the parameter X)

Note that the type of X is Set1, rather than the usual type-of-types Set, because the X parameter sits one
meta-level higher than the definitions themselves — the type Set cannot contain Set without making Agda
inconsistent10.

Over the course of this chapter, we will gradually refine this sketch into the concrete definitions we use in our
formalisation.

3.1 Names

One of the most commonly examined facets of term representation is how to represent variable names. Much
literature has been published on the subject, and a wide range of techniques exist. Perhaps the most common is
that of the de Bruijn index (de Bruijn, 1972), a simple system of assigning numerical indices to binders instead
of names. For example, the term λx. λy. x y can be restated with (stack-based) de Bruijn indices as λ. λ. 1 0.
These indices are sometimes presented the other way around, where the innermost binder is referenced by the
highest available index, but for our purposes, this orientation is easier.

These indices make reasoning and manipulating terms substantially easier in many cases: avoiding name clashes
when rewriting constraints is simply a matter of small arithmetic operations on indices, and α-equivalent terms
are propositionally equal.

Nicolas Pouillard has generalised de Bruijn indices in a series of systems (implemented in Agda, no less), starting
with “Nameless, Painless”, published in (Pouillard, 2011). Based on the notion of an abstract world of variable
names, these systems are designed chiefly to avoid programming errors when working with de Bruijn indices
(which, over the years, have established some notoriety for being somewhat difficult beasts to tame). While his
approach is certainly not without merit, we feel that using such a library to represent terms in OutsideInpXq
may needlessly complicate our definitions. The approach we have taken, based on de Bruijn indices, allows us
to exploit type-indexing techniques to generate a number of “theorems for free” via parametricity (Wadler,
1989), and expose an elegant categorical structure in our representation. It is not clear that we could retain this
simplicity and generality were we to rely on Pouillard’s work.

10 The inconsistency arises from Russell’s paradox.
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3.2 Indexed Terms

The simplest possible representation which uses de Bruijn indices simply uses the full set N to represent type
variables:11

record X : Set1 where
field Type : Set

Var : NÑ Type
Ñ1 : Type Ñ Type Ñ Type

field QConstraint : Set
ε : QConstraint
^ : QConstraint Ñ QConstraint Ñ QConstraint
„ : Type Ñ Type Ñ QConstraint

module OutsideIn px : Xq where
open Xpxq

data Constraint : Set where
QC : QConstraint Ñ Constraint
^1 : Constraint Ñ Constraint Ñ Constraint
F : Constraint Ñ Constraint
D_._ Ą _ : NÑ QConstraint Ñ Constraint Ñ Constraint

Fig. 7: Naïve constraint representation

This encoding has a number of obvious problems. For example, all terms have an infinite number of free variables
available, as the full type N is used for variable names. This makes it impossible to determine instantly whether a
term is closed or if a term contains free variables; one must instead analyse the term to extract this information.
A common technique used to solve this problem when encoding binders in dependently typed languages is to
index the type of terms by the number of available variables in the term. This technique is used often in generic
programming literature, such as (Morris et al., 2004), and was also shown by McBride to provide a convenient
termination measure that can be used to phrase first-order unification as structural recursion (McBride, 2003).
Reworking the above term definition to include such indexing, we get:

record X : Set1 where
field Type : NÑ Set

Var : @tn : Nu Ñ Fin nÑ Type n
Ñ1 : @tn : Nu Ñ Type nÑ Type nÑ Type n

field QConstraint : NÑ Set
ε : @tn : Nu Ñ QConstraint n
^ : @tn : Nu Ñ QConstraint nÑ QConstraint nÑ QConstraint n
„ : @tn : Nu Ñ Type nÑ Type nÑ QConstraint n

module OutsideIn px : Xq where
open Xpxq

data Constraint pn : Nq : Set where
QC : QConstraint nÑ Constraint n

^1 : Constraint nÑ Constraint nÑ Constraint n

F : Constraint psuc nq Ñ Constraint n

D_._ Ą _ : pm : Nq Ñ QConstraint nÑ Constraint pn`mq Ñ Constraint n

Fig. 8: Fin-named constraint representation

11 Where N is the type of the standard Peano naturals with zero : N and suc : NÑ N
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This definition provides a type-level distinction between closed terms and terms that may contain some free
variables, eliminating the problems with the earlier encoding. It enforces this by demanding that type variables
be of type Fin n, where n is the number of available variables in the term. Fin n is a type containing exactly
n inhabitants — a finite set of natural numbers r0, nq — defined as follows:

data Fin : NÑ Set where
zero : @tn : Nu Ñ Fin psuc nq
suc : @tn : Nu Ñ Fin nÑ Fin psuc nq

With this definition, the previously infinite number of available variables is now restricted to a finite number
described by the type index. For example, the term F. F. QC pVar zero „ Var psuc zeroqq is closed and could
therefore be of type Constraint n for any n : N — that is, it could appear in a context with any number of
available variables (including zero). The body of that constraint, QC pVar zero „ Var psuc zeroqq, is by contrast
typed most generally as Constraint psuc psuc nqq for any n : N, which means that the term can only validly
appear in a context with two or more available variables. Therefore, our form for the F quantifier introduces a
new type variable by incrementing the index:

F : Constraint psuc nq Ñ Constraint n

The local assumption constraint, unlike the F quantifier, introduces more than one variable at a time:

D_._ Ą _ : pm : Nq Ñ QConstraint nÑ Constraint pn`mq Ñ Constraint n

Note that the antecedent QConstraint has only n available variables, not n ` m, as it is impossible for the
antecent to mention any unification variables introduced in the succedent C-constraint.

3.3 Nested Data Types

While this indexing provides us a very nice way to handle de Bruijn indices for bound variables, we have not
introduced an elegant way to handle type constructors, such as Int or Maybe, which exist in the top-level
environment.

From the perspective of the constraint generation and solver infrastructure, type constructors are no different
from type variables. One possible solution, therefore, is to simply assign indices to these top level type construc-
tors. This makes type constructors difficult to distinguish from type variables, however, which becomes a serious
problem when instantiating the X parameter — type constructors, which are treated as rigid and cannot be
unified, must be distinguished from unification type variables, which can be substituted. In addition, assigning
indices to top-level global definitions is aesthetically unpleasing.

A common alternative is to introduce a separate Con introduction form for Type, which refers to type construc-
tors, as opposed to the Var form for type variables. This solution becomes unsatisfactory when we examine
the solver infrastructure (see fig. 5). Note that, when solving each implication constraint, all variables bound
outside the implication constraint, including variables that are unifiable outside the implication, are treated as
rigid, skolem variables. This means that a variable previously treated as unifiable could, in a different context,
be treated as rigid like a constructor. Using a separate Con form therefore does not bring any advantage — we
still have some subset of the available type variables being treated as skolem.

Our approach allows us to treat type constructors and type variables identically in the constraint generation
and solver infrastructure of the OutsideInpXq system itself, but retain the ability to separate skolem variables
from unification variables when implementing the simplifier. In addition, type constructors can be represented
by any type12, and therefore do not need to be assigned indices, which makes working with the system a great
deal more convenient.

12 Provided such a type has decidable equality.
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Our approach is to index terms not by the size of the set of available type variables, but by the set itself, as
shown below:

record X : Set1 where
field Type : SetÑ Set

Var : @tn : Setu Ñ nÑ Type n
Ñ1 : @tn : Setu Ñ Type nÑ Type nÑ Type n

field QConstraint : SetÑ Set
ε : @tn : Setu Ñ QConstraint n
^ : @tn : Setu Ñ QConstraint nÑ QConstraint nÑ QConstraint n
„ : @tn : Setu Ñ Type nÑ Type nÑ QConstraint n

module OutsideIn px : Xq where
open Xpxq

data Constraint pn : Setq : Set where
QC : QConstraint nÑ Constraint n

^1 : Constraint nÑ Constraint nÑ Constraint n

F : Constraint pS nq Ñ Constraint n

D_._ Ą _ : pm : Nq Ñ QConstraint nÑ Constraint pn‘mq Ñ Constraint n

Fig. 9: Constraint representation with nested data types

The secret to this representation lies in the S data type, used when new type variables are made available by
quantifiers. As an additional bound variable is now available, the type S τ must be isomorphic to τ ` 113, and
is therefore implemented as follows:

data S pτ : Setq : Set where
zero : S τ

suc : τ Ñ S τ

We also introduce another operation ‘, for local assumptions, which is essentially repeated application of S:

_‘_ : SetÑ NÑ Set

x‘ zero “ x

x‘ suc n “ pS xq ‘ n

Then, a simplifier can take as arguments constraints of type QConstraint px‘ nq, where x is the type for rigid
variables and constructors, and n is the number of additional variables that can be unified. This obviates the
need for an explicit set αtch to be passed to the solver — instead this information can be gleaned purely from the
type of constraints passed in. This approach is advantageous because it allows us to handle this reinterpretation
of variables in a unification or skolem context without changing the structure of the term.

3.3.1 Monads

Another elegant observation about this representation is that type terms can now form a categorical abstraction
familiar to every Haskell programmer — a monad. This monadic structure is not an original discovery; it has
been demonstrated by others in the past, doing similar work on term representation (Bird & Paterson, 1999;
Bellegard & Hook, 1994). Originally from category theory, a monad is understood by functional programmers
to be a type constructor m, a function unit : α Ñ m α and a Kleisli composition operator ˝m : pβ Ñ m γq Ñ

pαÑ m βq Ñ pαÑ m γq, such that the following laws hold:

Left Identity: unit ˝m f
¨
“ f

Right Identity: g ˝m unit
¨
“ g

Associativity: f ˝m pg ˝m hq
¨
“ pf ˝m gq ˝m h

13 i.e. Haskell’s Maybe type.

18



A category is comprised of a class of objects, a class of arrows or morphisms between those objects, including an
identity morphism for each object, and a morphism composition operation ˝ which must be an associative and
respect identity morphisms. From this definition, it is obvious that the above monad laws are just restatements
of the category laws for a specific category, called the Kleisli category for the monad m.

We introduce informally the notion of a category Agda, consisting of Agda types as objects, Agda functions
as morphisms, pλx Ñ xq as every identity morphism and function composition ˝ as morphism composition.14

Then, the Kleisli category for Type is a subcategory of Agda with all the same objects, but only those functions
with types of the form α Ñ Type β as morphisms. Note that the type α Ñ Type β is that of a substitution;
Kleisli composition is substitution composition, where Var is the identity substitution. Var is therefore the unit
operation for our monad and the identity morphism for our Kleisli category.

By requiring in our X parameter that Type be a monad, we are able to assume that substitution is well-behaved
with respect to the structure of the type terms.

3.3.2 Functors

We can simply derive the familiar bind function from Kleisli composition and unit:

bind : @tα βu Ñ pαÑ m βq Ñ m αÑ m β

bind f a “ pf ˝m pλxÑ aqq it

(Where “it” is a constructor for a unit type)

When applied to types, bind is clearly application of a substitution to a term:

bind : @tα βu Ñ pαÑ Type βq Ñ Type αÑ Type β

Viewed categorically, bind could be viewed here as a mapping from morphisms in the Kleisli category of Type
(i.e functions with types of the form α Ñ Type β) to morphisms in a new subcategory of Agda in the image
of Type, which we call the Type-subcategory. This category has morphisms consisting of Agda functions, and
objects consisting of types of the form Type τ for any τ . Note that the following two properties hold for bind:

Identity: bind unit ¨
“ id

Composition: bind f ˝ bind g
¨
“ bind pf ˝Type gq

If we have a mapping f from a category A to a category B, such that identity maps to identity, and composition
maps to composition, then f is called a functor from A to B. As this is true of bind, we can say that bind is a
functor from the Kleisli category of Type to the Type-subcategory.

We would like to be able to perform substitution on more than just Type terms. Specifically, it is also necessary
to perform substitution on QConstraints and, ultimately, Constraints.

To achieve this we require in the parameter X another functor, also from the Kleisli category of Type, but this
time to the subcategory of Agda in the image of QConstraint — the QConstraint-subcategory:

Q-subst : @tα βu Ñ pαÑ Type βq Ñ pQConstraint αÑ QConstraint βq

The functor laws tell us that this, once again, respects substitution operations:

Identity: Q-subst unit ¨
“ id

Composition: Q-subst f ˝Q-subst g ¨
“ Q-subst pf ˝Type gq

Given this functor, similar functors can be produced for Constraint and, indeed, any type that similarly
contains QConstraints.

Some difficulty arises, however, when defining the functor for terms which introduce variables: The form F. C

contains a subexpression of type Constraint pS αq. Showing that S is a monad15 produces the requisite

14 This is similar to the imaginary category Hask for Haskell, however unlike Hask, Agda types and functions do actually form a
category

15 The familiar Maybe monad, no less
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functors to transform our substitution α Ñ Type β to a substitution S α Ñ Type pS βq, as required for this
case. The form Dn. Q Ą C contains a subexpression of type Constraint pα ‘ nq, which is a slightly more
complicated beast to tame. Here, we must show not only that S is a monad, but that S ˝S is also, and S ˝S ˝S,
and so on. In other words, we have to show that for all n, λα. α‘ n is a monad. Towards this end, we borrow
the concept of a monad transformer, i.e. a monad homomorphism lift from any monad M to M ˝S. By showing
that lift is monad homomorphism for the S-transformer, and that the resultant type M ˝ S is a monad if M is
a monad, it can be trivially shown that any number of S’s form a monad, and thus that λα. α‘ n is a monad
as required.

Using the above, we have defined similar “substitution functors” for all types that are indexed by the set of
type variables.

3.3.3 Renaming

Another common operation for Types, QConstraints and so on is renaming. Renaming can be implemented via
functor composition in terms of substitution:

τ -rename : pαÑ βq Ñ pType αÑ Type βq
τ -rename f “ bind prename fq

Q-rename : pαÑ βq Ñ pQConstraint αÑ QConstraint βq
Q-rename f “ Q-subst prename fq

¨ ¨ ¨

Where rename is a functor from the base Agda category to the Kleisli category of Type:

rename : pαÑ βq Ñ pαÑ Type βq
rename f “ unit ˝ f

With these definitions, the common de Bruijn index “up-shift” substitution which increments every index is
trivially rename suc. Up-shifting by multiple variables at a time can be done simply by rename unitn where
unitn is the unit morphism of the monad λα. α‘ n.

3.3.4 A Note on Equality

Propositional equality is defined simply in Agda16, as a data type that reifies definitional equality:

data ” tA : Setu : AÑ AÑ Set where
refl : @tx : Au Ñ x ” x

This allows us to introduce definitional equality constraints to the local context by pattern matching, in order
to prove basic theorems like transitivity and symmetry of equality:

trans : @tA : Setutx y z : Au Ñ x ” y Ñ y ” z Ñ x ” z

trans refl refl “ refl

sym : @tA : Setutx y : Au Ñ x ” y Ñ y ” z

sym refl “ refl

The monad and functor laws shown above, however, are in terms of extensional equality, not this propositional
equality. Unfortunately, this equality is not extensional — that is, the statement that two functions f and g are

16 This definition is somewhat simplified - in particular, universe polymorphism is removed.
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propositionally equal, if, for all x, fpxq is propositionally equal to gpxq is not provable in Agda. Any value x
can only be said to be propositionally equal to some other value y if x and y both normalise to the same result.
If the definitions of two functions are (intensionally) different, they will not normalise to the same definition,
even if they give the same result for all inputs.

The general approach for proving lemmas which require extensionality is to prove them within Altenkirch’s
setoid-based17 model (Altenkirch, 1999). As this becomes quite tedious in practice, we opt for the perhaps more
inelegant approach of simply postulating functional extensionality:

postulate extensionality : tA B : Setutf g : AÑ Bu Ñ p@xÑ f x ” g xq Ñ f ” g

Agda’s logic is consistent with this postulate, however we do lose the sometimes-valuable property of canonicity
for equality proofs – that is, not all equality proofs normalise to a canonical closed term (i.e refl), as the
postulate prevents normalisation. In practice, this means that programs which depend on this postulate will
not give meaningful results (they crash the program much like Haskell’s error), however the postulate can be
freely used for proof work - that is, to show that a particular type is inhabited.

We do not need extensionality to model the OutsideInpXq algorithm itself. We require it only to prove monad
laws and similar identities about our term representation. The loss of canonicity in exchange for simpler proofs
is a trade we deem acceptable.

3.4 Separator and Prenexer

The definition of SeparatedConstraint, our representation of C, is uninteresting save that it too is indexed
by the set of available type variables, and is similarly equipped with functors for substitution.

It seems correct, then, that our separator should be a total function of the following type:

sep : @ ttv : Setu Ñ Constraint tv Ñ SeparatedConstraint tv

However our sep function is not total, as it is. The sep function defined in figure 5 is not defined for constraints
of the form F. C. To solve this problem, we adjust our constraint representation to be indexed by a strata:

record X : Set1 where
field Type : SetÑ Set

Var : @tn : Setu Ñ nÑ Type n
Ñ1 : @tn : Setu Ñ Type nÑ Type nÑ Type n

field QConstraint : SetÑ Set
ε : @tn : Setu Ñ QConstraint n
^ : @tn : Setu Ñ QConstraint nÑ QConstraint nÑ QConstraint n
„ : @tn : Setu Ñ Type nÑ Type nÑ QConstraint n

module OutsideIn px : Xq where
open Xpxq

data Strata : Set where
Hi : Strata
Lo : Strata

data Constraint pn : Setq : Strata Ñ Set where
QC : @tσ : Stratau Ñ QConstraint nÑ Constraint n σ

^1 : @tσ : Stratau Ñ Constraint n σ Ñ Constraint n σ Ñ Constraint n σ

F : Constraint pS nq Hi Ñ Constraint n Hi
D_._ Ą _ : @tσu Ñ pm : Nq Ñ QConstraint nÑ Constraint pn‘mq σ Ñ Constraint n σ

Fig. 10: Final Constraint Representation

17 A setoid being a dependent product pτ,«q where « is an equivalence relation on the type τ .
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C
prenex
ÝÑ C

Q
prenex
ÝÑ Q

PrenexQC
C

prenex
ÝÑ C 1

Fα. C
prenex
ÝÑ Fα. C 1

PrenexF

x
prenex
ÝÑ Fᾱ. x1 y

prenex
ÝÑ Fβ̄. y1

x^ y
prenex
ÝÑ Fᾱβ̄. x1 ^ y1

PrenexConj

C
prenex
ÝÑ Fβ̄. C 1

Dᾱ. Q Ą C
prenex
ÝÑ Dᾱβ̄. Q Ą C 1

PrenexImp

Fig. 11: A structurally recursive prenexer

Note that the type Constraint n Hi contains all forms of constraints, whereas the type Constraint n Lo
contains all constraints except for constraints of the form F. C. This allows us to achieve a limited kind of
subtyping via type indexing.

Now we can more accurately specify the domain of the sep function, so as to make it total:

sep : @ ttv : Setu Ñ Constraint tv Lo Ñ SeparatedConstraint tv

We can also give a more detailed account of the type of the prenexer:

prenex : @ ttv : Setu Ñ Constraint tv Hi Ñ D pλ nÑ Constraint ptv ‘ nq Loq

Implementing the prenexer as presented in figure 4 is somewhat difficult, as it is presented as a rewrite system
rather than as a neat structural recursion. We instead implement a structurally recursive prenexer as shown in
figure 11. The equivalence between these two formalisations can be proven via an easy induction.

3.5 Expressions

Our representation of Expressions merits some attention as it is indexed by not one, but two types — one for
available type variable names, and one for available variables on the value level:

data Expression pev tv : Setq : ¨ ¨ ¨

This approach brings a number of advantages. For example, type environments like Γ can be represented as a
total function — it is impossible for an environment lookup to fail. This also ensures that we update the type
environment whenever new value-level variables are available.

It is problematic, however, when dealing with pattern matching. Inside a pattern alternative, some number of
new value variables are introduced into scope — this number should be reflected in the ev index. The exact
number of variables, however, is dependent on the type (or, at least, the arity) of the data constructor in the
pattern, which is not information we have in our possession when constructing syntax trees. Furthermore, it is
already clear that data constructors require separate treatment from regular variables, as patterns contain only
names of data constructors, not arbitrary variables.

This calls for a more sophisticated representation of names in expressions. Instead of simply using ev to refer
to value-level variables, we will use Name ev, defined as follows:

data NameType : Set where
Binding : NameType
Datacon : NÑ NameType

data Name pn : Setq : NameType Ñ Set where
N : nÑ Name n Binding

DC : @ txu Ñ dc xÑ Name n pDatacon xq

(Where dc is a type for datacon names, indexed by their arity, provided in the parameter X)
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A Name can signify, therefore, either a straightforward binding or a data constructor of some arity. As the
arity is presented in the type Name, we can easily produce the desired type for a pattern matching alternative:

data Alternative pev tv : Setq : Shape Ñ Set where
alt
ÝÑ : @tn : Nu Ñ Name ev pDatacon nq Ñ Expression pev ‘ nq tv Ñ

Alternative ev tv

This technique works greatly to our advantage as there is another instance where data constructors require
special treatment; this time in constraint generation. Observe the two rules in constraint generation where the
environment is consulted; the rules VarCon and Case:

pv : @ā. Q1 ñ τ1q P Γ
∆; Γ $§ v : τ  Fᾱ. ra ÞÑ αsQ1 ^

1 pτ „ ra ÞÑ αsτ1q
VarCon

α, β, γ̄, δ̄,∆; Γ $§ e : α C

pKi : @āb̄. Qi ñ τ̄i Ñ T āq P Γ α, β, γ̄, δ̄, ρ̄,∆; Γ, pxi : rb ÞÑ ρsra ÞÑ γsτiq $§ ei : δi  Ci

C 1i “

#

Ci ^
1 δi „ β if b̄i “ ε and Qi “ ε

Fρ̄. Dε.prb ÞÑ ρsra ÞÑ γsQiq Ą Ci ^
1 δi „ β otherwise

∆; Γ $§ case e of tKi x̄i Ñ eiu : τ  Fα.Fβ.Fγ̄.Fδ̄. C ^1 pT γ̄ „ αq ^1 p
ľ

C 1iq ^
1 pτ „ βq

Case

Note that in each instance, the form of the type schema retrieved from the environment is different! One form
for data constructors (@āb̄. Q ñ τ̄ Ñ T ā), and another for bindings (@ā. Q ñ τ). As Type is part of the
X parameter, we do not have the luxury of simply pattern-matching on the structure of the type schema to
determine if it is of the correct form. Instead we adjust our encoding of type schema, in order to force the
user to provide correctly-structured types in the environment for data constructors. Specifically, we index our
representation of type schema by a NameType, providing a general type schema form for types of regular
Bindings but more structured forms for types of data constructors:

data TypeSchema ptv : Setq : NameType Ñ Set where
@1_._ñ_ : pn : Nq Ñ QConstraint ptv ‘ nq Ñ Type ptv ‘ nq Ñ TypeSchema tv Regular
@1_._ÝÑ_ : pa : Nq tr : Nu Ñ Vec pType ptv ‘ aqq r Ñ tv Ñ TypeSchema tv pDatacon rq

@1_,_._ñ_ÝÑ_ : pa b : Nq tr : Nu Ñ QConstraint ptv ‘ a ‘ bq Ñ

Vec pType ptv ‘ a ‘ bqq r Ñ tv Ñ TypeSchema tv pDatacon rq

Here, we use a length-indexed vector Vec to ensure that the arity of the function type for data constructors
matches the arity mentioned in their Name.

This allows us to define environments as a total mapping of any Name of type n to TypeSchema for the same
name type n.

Environment : SetÑ SetÑ Set
Environment ev tv “ @tn : NameTypeu Ñ Name ev nÑ TypeSchema tv n

3.5.1 Shape Indexing

One of the issues that results from indexing expressions by the set of available type variables is that constraint
generation is no longer quite as trivially structurally recursive. For example, take the constraint generation rule
for abstraction:

α, β,∆; Γ, px : αq $§ e : β  C

∆; Γ $§ λx. e : τ  Fα. Fβ. C ^1 pτ „ pαÑ βqq
Abs

In this rule, two new type variables are introduced into the set of available variables ∆. This corresponds in
our representation to an index S pS tvq, however the expression e’s index is merely tv. The obvious way to
remedy this is to simply “up-shift” the de Bruijn indices in e twice using the appropriate substitution functor,

23



data NameType : Set where
Binding : NameType
Datacon : NÑ NameType

data Name pn : Setq : NameType Ñ Set where
N : nÑ Name n Binding

DC : @ txu Ñ dc xÑ Name n pDatacon xq

data Alternative pev tv : Setq : Shape Ñ Set where
alt
ÝÑ : @tn : Nutσ : Shapeu Ñ Name ev pDatacon nq Ñ Expression pev ‘ nq tv σ Ñ

Alternative ev tv pUnary σq

data Alternatives pev tv : Setq : Shape Ñ Set where
esac : Alternatives ev tv Nullary
} : @tσ1 σ2 : Shapeu Ñ Alternative ev tv σ1 Ñ Alternatives ev tv σ2 Ñ

Alternatives ev tv pBinary σ1 σ2q

data Expression pev tv : Setq : Shape Ñ Set where
EVar : @tx : NameTypeu Ñ Name ev xÑ Expression ev tv Nullary
λ1 : @tσ : Shapeu Ñ Expression pS evq tv σ Ñ Expression ev tv pUnary σq

app : @tσ1 σ2 : Shapeu Ñ Expression ev tv σ1 Ñ Expression ev tv σ2 Ñ

Expression ev tv pBinary σ1 σ2q

let : @tσ1 σ2 : Shapeu Ñ Expression ev tv σ1 Ñ Expression pS evq tv σ2 Ñ

Expression ev tv pBinary σ1 σ2q

leta : @tσ1 σ2 : Shapeu Ñ Expression ev tv σ1 Ñ Type tv Ñ Expression pS evq tv σ2 Ñ

Expression ev tv pBinary σ1 σ2q

letga : @tσ1 σ2 : Shapeu Ñ pn : Nq Ñ Expression ev ptv ‘ nq σ1 Ñ

QConstraint ptv ‘ nq Ñ Type ptv ‘ nq Ñ Expression pS evq tv σ2 Ñ

Expression ev tv pBinary σ1 σ2q

case : @tσ1 σ2u Ñ Expression ev tv σ1 Ñ Alternatives ev tv σ2 Ñ

Expression ev tv pBinary σ1 σ2q

Fig. 12: The complete Expression representation

however this causes Agda’s termination checker to complain — the recursive invocation is no longer on the
obviously smaller e; instead it is on the not-so-obviously smaller e-subst prename psuc ˝ sucqq e. In order to
show termination, we must show that substitution on types (which change the structure of type terms) do not
change the recursion pattern used by the constraint generation (the structure of expression terms). We achieve
this using a simple technique: we add a third index to the Expression type, which represents the structure or
the shape of the expression tree (see fig. 12). The Shape type itself is a straightforward tree structure which is
sufficient to encode the recursion pattern of constraint generation:

data Shape : Set where
Nullary : Shape
Unary : Shape Ñ Shape
Binary : Shape Ñ Shape Ñ Shape

With this addition, the type of the substitution functor for expressions now becomes:

e-subst : @tσ : Shapeu tev α β : Setu Ñ pαÑ Type βq Ñ Expression ev α σ Ñ Expression ev β σ

The fact that the shape of the expression is not changed by type substitution is now made clear in the type of
the type substitution operation. In constraint generation, recursion once again becomes structural, not on the
expressions themselves, but on their shape parameters.

3.6 Constraint Generator and Solver

Now that we have established our choice of representation for terms and types, we must still choose a represen-
tation for the computations themselves, specifically constraint generation, and solving.
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Broadly speaking, there are two main ways to encode this computation. The first is to directly encode the
computation as an Agda function (using constraint generation as an example):

genConstraint : tev tv : Setu tσ : Shapeu
Ñ Environment ev tv
Ñ Expression ev tv σ
Ñ Type tv
Ñ Constraint tv

¨ ¨ ¨

This is certainly the most straightforward encoding of the algorithm, and was the method we had used during
development of our formalisation. Ultimately, we chose not to use this simple representation, however, opting
instead for a propositional approach, defining a propositional data type for the constraint generation judgement:

syntax ConstraintGen Γ τ e C “ Γ $§ e : τ  C

data ConstraintGen tev tv : Setu pΓ : Environment ev tvq pτ : Type tvq :
tσ : Shapeu Ñ Expression ev tv σ Ñ Constraint tv Extended Ñ Set where

¨ ¨ ¨

This type contains constructors corresponding to each rule in the constraint generation (see fig. 3). Then, to
provide an algorithmic interpretation of these rules, and therefore provide a way to actually run our constraint
generator and infer types, we write a function that generates a proof of this proposition given the requisite
inputs18:

genConstraint 1 : tev tv : Setu tσ : Shapeu pΓ : Environment ev tvq pe : Expression ev tv σq pτ : Type tvq
Ñ D pλ C Ñ Γ $§ e : τ  Cq

This approach brings a number of advantages. For one, it brings a substantial performance improvement — the
constraint generator takes one tenth the time and one fifth the memory to type check. It also gives us an Agda
proposition exactly the same in form to the rules presented in the previous chapter. Not only a nice aesthetic
consequence, this also liberates us from certain petty annoyances that arise from encoding the algorithm directly.
For example, the solver is partial — not all constraints are satisfiable. In a direct functional encoding, this would
necessitate Maybe types or similar mechanisms to deal with partiality. The propositional encoding of the solver,
however, is only ever constructible in the happy case; the partiality is relegated to the algorithmic interpretation
of the proposition.

If we desire to prove things about these operations (for example, inference soundness and principality), then the
propositional encoding of these algorithms is much more preferable. Instead of evaluating expressions and pattern
matching on their results, we can more directly match on the various rules used to justify the proposition. This
makes proofs done on paper about these systems much more straightforward to transfer to our formalisation.

Another advantage of the propositional encoding comes from the solver. Observe the rule for the solver infras-
tructure:

Q;Qg; ᾱ
simp
$§ Q Qr; θ @ppDI β̄i. Qi Ą Ciq P Iq. Q;Qg ^Qr ^Qi; β̄i

solv
$§ Ci  ε; θi

Q;Qg; ᾱ
solv
$§ Q ¨ I  Qr; θ

In particular, note that each implication constraint body must resolve to ε. In a propositional encoding, this is a
non-issue, but an algorithmic encoding must check the return value of the solver function given the implication
constraint, to ensure that the result is ε. As QConstraints are part of the parameter and therefore abstract,
we cannot pattern match to make these assurances, and must therefore demand a proof of the decidability of
equality to ε in the X constraint:

field dec-ε : px : QConstraintq Ñ Dec px ” εq

18 Interestingly, as this function must be total and terminating, this can be viewed as a proof of the decidability of the Constraint-
Gen proposition
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Where Dec is defined (in the standard library) as follows:

data Dec pP : Setq : Set where
yes : P Ñ Dec P

no : pP Ñ Kq Ñ Dec P

By adopting a propositional encoding for the solver, we do not eliminate this issue, but at least we are able to
confine it merely to the algorithmic interpretation of the proposition rather than have such nonsense pollute
the rules themselves.
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4 Simple Instantiation

This chapter describes a simple instantiation of the X parameter of the OutsideInpXq system. We have
formalised this instantiation in Agda and used it to infer types for basic programs.

By developing this simple instantiation, we not only provide a way to actually use the type checker we have
formalised, but we also ensure that it is in fact possible to instantiate. Otherwise, it would be possible that the
requirements in the X parameter were too onerous to actually be instantiable19.

Our instantiation of QConstraint is the smallest that meets the requirements of the X parameter. It consists
only of ε, constraint conjunction and type equality constraints:

data QConstraint px : Setq : Set where
„ : Type xÑ Type xÑ QConstraint x

^ : QConstraint xÑ QConstraint xÑ QConstraint x

ε : QConstraint x

Types consist of type variables (or constructors), type application and function types — the typical assortment
of types from System F.

data Type px : Setq : Set where
Var : nÑ Type n

Ñ1 : Type nÑ Type nÑ Type n

app : Type nÑ Type nÑ Type n

Types are also a monad, as required by the X parameter, but this proof is entirely uneventful and uninteresting,
as is the proof of the functor laws for the Q-subst functor. Indeed, the only truly interesting component of the
simple instantiation is the simplifier.

The simplest possible simplifier is simply the no-op:

Q ; Qg ; αtch $§ Qw  Qw ; unitType

While this simplifier meets the simplifier soundness and principality criteria in figure 2, it is not a particularly
interesting simplifier to work with. Instead, we define a simplifier that is actually capable of solving constraints.

Broadly speaking, the simplifier is divided into two main components:

1. Unification, for solving equality constraints.
2. Solving, which uses the results from unification to solve constraint terms.

4.1 Unification

Unification is the process of producing a substitution θ given two terms τ1 and τ2 such that θτ1 ” θτ2. Unification
for first-order terms is decidable via Robinson’s algorithm (Robinson, 1965), but this has a nontrivial termination
argument, based on the fact that each variable substituted reduces the number of available variables in the term.
This gives a termination measure, but it is not one that is immediately visible as a structural recursion. This is
problematic in Agda, which mandates that all functions be structurally recursive.

McBride more recently demonstrated a structurally recursive presentation of first-order unification in a depen-
dently typed setting, indexing terms by the number of available unification variables (McBride, 2003). For the
purposes of our unification, we shamelessly reuse his presentation with little modification.

One slight difference is that our Type terms do not come indexed by the number of available variables they
contain. Rather, they come in the form Type pτ ‘ nq, with skolem variables and constructor names represented
by the type τ , and n unification variables available. We define our unification algorithm in terms of a special

19 As a most extreme example: if we had, by some accident, required a proof of K in our X parameter, this would not only be
impossible to instantiate, it would also render any proof about the system entirely useless!
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Q ; Qg
simp
$§ Qw  Qr ; θ

Q ; Qg
simp
$§ ε ε ; unitType

Empty

Q ; Qg
simp
$§ Q1  Q11 ; θ1 Q ; Qg

simp
$§ θ1Q2  Q12 ; θ2

Q ; Qg
simp
$§ Q1 ^Q2  θ2Q

1
1 ^Q

1
2 ; θ2 ˝Type θ1

Conj

τ1 mgu τ2  θ

Q ; Qg
simp
$§ τ1 „ τ2  ε ; θ

Mgu
Qg

?
$§ τ1 „ τ2

Q ; Qg
simp
$§ τ1 „ τ2  ε ; unitType

Entail

Q ; Qg
simp
$§ τ1 „ τ2  τ1 „ τ2 ; unitType

GiveUp

Qg
?
$§ Qw

Q
?
$§ Q

Refl
Q1

?
$§ Q

Q1 ^Q2
?
$§ Q

ConjE1
Q2

?
$§ Q

Q1 ^Q2
?
$§ Q

ConjE2

τ1 mgu τ2  θ

(first order unification)

Fig. 13: Simple instantiation of the simplifier

type used for names, which explicitly separates skolem from unification variables — after all, they are treated
very differently when performing unification:

data SName psk : Setq pun : Nq : Set where
unification : Fin un Ñ SName sk un
rigid : sk Ñ SName sk un

Then, we define the straightforward isomorphism between the type used for names in the simplifier, and this
special SName type used in the unification:

iso1 : @tm : Nutt : Setu Ñ t‘mÑ SName t m

iso2 : @tm : Nutt : Setu Ñ SName t mÑ t‘m

This isomorphism can be applied to types and constraints using the standard rename functors, which allows us
to use a convenient representation for unification without affecting any other component of the instantiation or
of the system.

As this representation trivially ensures that the domain of any substitution is restricted only to the unification
variables αtch, we omit mention of αtch in figure 13.

4.2 Solving

The overall simplifier has to deal with the three possible constraint forms (see fig. 13). Empty ε constraints
resolve trivially to the identity substitution, conjunctions resolve to a composition of the substitutions resulting
from each of the two conjuncts, and type equality resolves to the most general unifier of the two types. There
are two other rules for type equality: Entail, which searches for an identical constraint to the wanted equality
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within the given context in order to trivially resolve the wanted constraint; and GiveUp, which simply gives
up on solving the constraint entirely, returning it as a residual constraint. The presence of these rules makes
the system not syntax-directed, and therefore it does not directly correspond to a deterministic algorithm. We
resolve this nondeterminism by introducing an ordering on the rules: Mgu is attempted first, then Entail,
then GiveUp.

Another problem presents itself when one attempts to encode this simplifier in Agda. In the rule Conj, the first
substitution θ is applied to the second conjunct Q2, and recursion occurs on the substituted constraint θQ2.
This recursion is non-structural — the dreaded termination checker has once again reared its head.

In order to convince Agda that applying a type substitution to a constraint does not affect the shape of the
constraint, we employ a similar tactic to the technique used for representing Expressions previously. We shall
define a new form of constraint, indexed by its shape:

data SConstraint px : Setq : Shape Ñ Set where
„ : Type xÑ Type xÑ SConstraint x Nullary
^ : @ts1 s2u Ñ SConstraint x r1 Ñ SConstraint x r2 Ñ SConstraint x pBinary s1 s2q

ε : SConstraint x Nullary

With this indexed data type, substitution now has the following type:

SC-subst : @tα βutsu Ñ pαÑ Type βq Ñ SConstraint α sÑ SConstraint β s

As with Expressions, we can now glean from the type that the shape of the constraint term does not change
with substitution. Therefore, structural recursion can occur on the Shape index of the SConstraint term,
rather than on the term itself. As SConstraint and QConstraint are structurally identical, it is trivial to
convert between them.

4.3 Results

We have used this simple instantiation to successfully infer types, including polymorphic types and types
involving GADTs. In particular, recall the example used earlier to illustrate the necessity of removing let-
generalisation:

data IntOrBool :: ˚ Ñ ˚ where
IsInt :: pτ „ Intq ñ IntOrBool τ
IsBool :: pτ „ Boolq ñ IntOrBool τ

f :: IntOrBool αÑ αÑ Bool
f x y “ let g z “ not y in

case x of
IsInt Ñ True
IsBool Ñ g pq

This expression rightly fails to type-check in our simple instantiation, however if we add a type signature to g:

f :: IntOrBool αÑ αÑ Bool
f x y “ let g : @β. pα „ Boolq Ñ β Ñ Bool

g z “ not y in
case x of

IsInt Ñ True
IsBool Ñ g pq

The program now type-checks in our simple instantiation of OutsideInpXq, as desired.
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5 Conclusions and Future Work

Our formalisation comes to approximately three thousand lines of Agda definitions and proofs, excluding com-
ments, which makes it one of the largest single formalisations in Agda to date, approximately one fifth the size of
the entire Agda standard library. It takes approximately 46 seconds to type check, using the latest development
version of Agda 2.3.2 on a mid-2011 MacBook Pro. Individual modules take no longer than five seconds to
check.

During our development, constraint generation and other phases of the algorithm were written predominantly
in a direct, functional style, rather than the final propositional encoding which we present here. Constraint
generation, written this way, took approximately five minutes to type check, and required approximately six
gigabytes of RAM — just for the constraint generation module alone. Exactly what causes this is still unclear,
however we have raised the issue with the Agda developers.

While in development, we attempted to make extensive use of several experimental Agda features, such as in-
stance arguments (Devriese & Piessens, 2011), however this frequently resulted in strangely unsolved metavari-
ables, confusing error messages, or worse, internal errors from Agda’s type checker.

One of our goals in this endeavour is to show Agda’s readiness for type systems work. Despite all of the
above problems, we believe we have succeeded in this respect. Agda has, for the most part, provided a very
expressive language for us to encode our formalisation. Certain tricks, such as our encoding of expression names
or our indexing of type terms, would be highly uncommon in proof assistants such as Coq and impossible in
theorem provers such as Isabelle. On the other hand, Agda requires that all termination arguments be phrased
in terms of structural recursion, which did result in some minor contortions to our formalisation that would not
be necessary if a separate termination proof could be provided. Conor McBride has made the argument that
such contortions are merely exposing pre-existing structure of our algorithms that was previously hidden, and
therefore a structurally recursive presentation is clearer than a presentation with a separate termination proof
(McBride, 2003). We are not certain whether we agree with this argument, but offer it as justification for the
abovementioned contortions.

Agda is most definitely a programming language first and a proof assistant second. For this reason, it could
be argued that we have been playing to Agda’s strengths — having encoded the structures, definitions and
algorithms of the system, we have formalised the part of the system to which Agda is best suited. It remains to
be seen whether Agda is suitable for serious proof work (see section 5.1 for a discussion of a possible soundness
proof for our formalisation).

Another goal of our research was to provide a base upon which other type system formalisations can be developed,
and to create a testbed for experimenting with OutsideInpXq on solid formal ground. By including a simple
instantiation of the system, we have demonstrated the capability of our formalisation to represent real type
systems and infer types for real programs. An obvious direction for future work is to instantiate X for all of
Haskell, a prospect we discuss in section 5.2, as well as expanding the simple instantiation to include proofs of
the simplifier soundness and principality conditions.

5.1 Proofs

We have completed a preliminary investigation into a proof of soundness for the inference system we have
presented. Soundness here refers the notion that if a particular type τ is inferred for an expression e, then there
exists a proof according to some natural, permissive typing rules that e is well typed by τ . Also of interest is
a principality proof, which suggests that any inferred type of an expression e is the principal type for e. The
original OutsideInpXq paper presents typing rules as well as a proof of soundness and principality for their
system, assuming simplifier soundness and guess-freedom conditions. A number of obstacles make converting
those proofs to our formalisation less than straightforward:

1. The proofs presented in the OutsideInpXq paper are not very detailed, mostly due to space constraints,
and as a result some steps in the proof are not very clear. For example, both proofs mention induction,
however the exact structure of the induction is not clarified; and in both proofs, several cases are dismissed
as similar to a previous case, without clarification as to exactly what is different or how they are similar.
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2. Some properties of entailment upon which the soundness proof relies are not even formalised in the
entailment relation presented in the paper. For example, it is not required that ε is entailed by any
context, nor is conjunction elimination included in the original presentation of entailment. Nevertheless,
these properties are relied upon by the soundness proof.

3. Our formalisation introduces a few new layers of indirection between constraint generation and constraint
solving (such as the prenexer, separator and so on). This added indirection means that the constraint
produced by the constraint generator and the constraint given to the solver are not the same, which
makes reasoning more difficult.

4. The original proof takes certain properties of conjunctions as automatic and invisible; specifically asso-
ciativity, commutativity, and identity with ε. This means that goals might be perfectly provable but not
fitting to the exact structure of the constraints required, which can make proving much more difficult.

The first two points here mostly concern problems with the original OutsideInpXq proof. These problems are
not insurmountable, and indeed they are to be expected — all proofs become sloppy when viewed through the
harsh, clear lens of a proof assistant. The final two points, however, reveal some weaknesses in Agda’s approach to
theorem proving. It is common to find oneself encumbered by structure in languages such as Agda, where proofs
of even simple properties can be complicated by the wrong choice of representation. In Isabelle, for example,
correspondences across layers of indirection and simple lemmas about entailment (such as commutativity of
conjunction) can be added to an automatic simplifier that would make these problems trivially soluble. Agda,
on the other hand, places on us the onerous burden of manually rewriting terms to be of the correct structure,
and manually transporting properties across isomorphisms.

While these obstacles are irritating, they are not impossible to overcome. Therefore, our subsequent research
effort shall be devoted to developing a soundness proof for our formalisation.

5.2 Instantiating X for Haskell

Another obvious progression from this point is to investigate an instantiation of the X parameter with a
sophisticated type system that supports the many extensions available in Haskell, such as type classes (and
their corresponding top-level axiom schemes), type families, and so on. A surface evaluation reveals that this
would likely be quite difficult, chiefly because the simplifier for this Haskell-like type system does not have a
straightforward termination measure — Indeed, none is presented in the original OutsideInpXq paper, which
presents this simplifier as a sequence of rewrite rules. The GHC implementation of the simplifier also has no
obvious termination argument. While a proof of termination could no doubt be found (the system does, after all,
appear to terminate!), it may well be difficult to phrase such a sophisticated simplifier as a structural recursion.

One method towards circumventing this problem (which does not involve determining a complicated termination
argument for the rewrite system) is to simply pass an arbitrary large natural number to the rewrite system which
reduces this number by one on each rule application, failing if the number reaches zero. A proof of termination
would then be rephrased as a proof that there exists a number for any term which, when given to this system
along with the term, will result in an expression in normal form (i.e. not fail). By rephrasing it this way, Agda
will view the rewrite system as structurally recursive in the natural number, and a separate proof of termination
can be provided20.

5.3 Summary of Contributions

‚ A more rigorous and clear formulation of the OutsideInpXq inference system.
‚ An Agda formalisation of this system, instantiable for real type systems, that can be used for experimen-
tation and development of new type system extensions on solid formal ground.

‚ A simple example instantiation of the above Agda formalisation, which can be used to infer types for basic
programs, and can also serve as a basis for more sophisticated instantiations.

‚ A demonstration of a variety of representational techniques for names and terms, suitable for similar work
in both dependently-typed languages like Agda, and almost-dependently-typed languages like Haskell.

20 Or simply assumed, if no proof is found.
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Through our work on OutsideInpXq, we have shown that Agda gives us through its type system a very
useful and powerful language to express structure and maintain invariants about our data. The addition of a
soundness and principality proof, an obvious direction for future work, would make our formalisation highly
compelling for those seeking to extend or experiment with Haskell’s type inference system. Even without such
a proof, our formalisation already serves as a platform for experimentation, as it is the only implementation of
OutsideInpXq that is actually abstracted over its X parameter. Ultimately, this project has brought us one
small step closer to a rigorously formalised type system for GHC Haskell.
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