{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.NonEmpty.Base where
open import Level using (Level)
open import Data.Bool.Base using (Bool; false; true; not; T)
open import Data.List.Base as List using (List; []; _∷_)
open import Data.Maybe.Base using (Maybe ; nothing; just)
open import Data.Nat.Base as ℕ
open import Data.Product as Prod using (∃; _×_; proj₁; proj₂; _,_; -,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Data.These.Base as These using (These; this; that; these)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Function.Base
open import Relation.Binary.PropositionalEquality.Core using (_≢_)
private
variable
a b c : Level
A : Set a
B : Set b
C : Set c
infixr 5 _∷_
record List⁺ (A : Set a) : Set a where
constructor _∷_
field
head : A
tail : List A
open List⁺ public
uncons : List⁺ A → A × List A
uncons (hd ∷ tl) = hd , tl
[_] : A → List⁺ A
[ x ] = x ∷ []
infixr 5 _∷⁺_
_∷⁺_ : A → List⁺ A → List⁺ A
x ∷⁺ y ∷ xs = x ∷ y ∷ xs
length : List⁺ A → ℕ
length (x ∷ xs) = suc (List.length xs)
toList : List⁺ A → List A
toList (x ∷ xs) = x ∷ xs
fromList : List A → Maybe (List⁺ A)
fromList [] = nothing
fromList (x ∷ xs) = just (x ∷ xs)
fromVec : ∀ {n} → Vec A (suc n) → List⁺ A
fromVec (x ∷ xs) = x ∷ Vec.toList xs
toVec : (xs : List⁺ A) → Vec A (length xs)
toVec (x ∷ xs) = x ∷ Vec.fromList xs
lift : (∀ {m} → Vec A (suc m) → ∃ λ n → Vec B (suc n)) →
List⁺ A → List⁺ B
lift f xs = fromVec (proj₂ (f (toVec xs)))
map : (A → B) → List⁺ A → List⁺ B
map f (x ∷ xs) = (f x ∷ List.map f xs)
replicate : ∀ n → n ≢ 0 → A → List⁺ A
replicate n n≢0 a = a ∷ List.replicate (pred n) a
foldr : (A → B → B) → (A → B) → List⁺ A → B
foldr {A = A} {B = B} c s (x ∷ xs) = foldr′ x xs
where
foldr′ : A → List A → B
foldr′ x [] = s x
foldr′ x (y ∷ xs) = c x (foldr′ y xs)
foldr₁ : (A → A → A) → List⁺ A → A
foldr₁ f = foldr f id
foldl : (B → A → B) → (A → B) → List⁺ A → B
foldl c s (x ∷ xs) = List.foldl c (s x) xs
foldl₁ : (A → A → A) → List⁺ A → A
foldl₁ f = foldl f id
infixr 5 _⁺++⁺_ _++⁺_ _⁺++_
_⁺++⁺_ : List⁺ A → List⁺ A → List⁺ A
(x ∷ xs) ⁺++⁺ (y ∷ ys) = x ∷ (xs List.++ y ∷ ys)
_⁺++_ : List⁺ A → List A → List⁺ A
(x ∷ xs) ⁺++ ys = x ∷ (xs List.++ ys)
_++⁺_ : List A → List⁺ A → List⁺ A
xs ++⁺ ys = List.foldr _∷⁺_ ys xs
concat : List⁺ (List⁺ A) → List⁺ A
concat (xs ∷ xss) = xs ⁺++ List.concat (List.map toList xss)
concatMap : (A → List⁺ B) → List⁺ A → List⁺ B
concatMap f = concat ∘′ map f
reverse : List⁺ A → List⁺ A
reverse = lift (-,_ ∘′ Vec.reverse)
alignWith : (These A B → C) → List⁺ A → List⁺ B → List⁺ C
alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ List.alignWith f as bs
zipWith : (A → B → C) → List⁺ A → List⁺ B → List⁺ C
zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ List.zipWith f as bs
unalignWith : (A → These B C) → List⁺ A → These (List⁺ B) (List⁺ C)
unalignWith f = foldr (These.alignWith mcons mcons ∘′ f)
(These.map [_] [_] ∘′ f)
where mcons : ∀ {e} {E : Set e} → These E (List⁺ E) → List⁺ E
mcons = These.fold [_] id _∷⁺_
unzipWith : (A → B × C) → List⁺ A → List⁺ B × List⁺ C
unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (List.unzipWith f as)
align : List⁺ A → List⁺ B → List⁺ (These A B)
align = alignWith id
zip : List⁺ A → List⁺ B → List⁺ (A × B)
zip = zipWith _,_
unalign : List⁺ (These A B) → These (List⁺ A) (List⁺ B)
unalign = unalignWith id
unzip : List⁺ (A × B) → List⁺ A × List⁺ B
unzip = unzipWith id
infixl 5 _∷ʳ_ _⁺∷ʳ_
_∷ʳ_ : List A → A → List⁺ A
[] ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs List.∷ʳ y)
_⁺∷ʳ_ : List⁺ A → A → List⁺ A
xs ⁺∷ʳ x = toList xs ∷ʳ x
infixl 5 _∷ʳ′_
data SnocView {A : Set a} : List⁺ A → Set a where
_∷ʳ′_ : (xs : List A) (x : A) → SnocView (xs ∷ʳ x)
snocView : (xs : List⁺ A) → SnocView xs
snocView (x ∷ xs) with List.initLast xs
snocView (x ∷ .[]) | [] = [] ∷ʳ′ x
snocView (x ∷ .(xs List.∷ʳ y)) | xs List.∷ʳ′ y = (x ∷ xs) ∷ʳ′ y
last : List⁺ A → A
last xs with snocView xs
last .(ys ∷ʳ y) | ys ∷ʳ′ y = y